IDPpred: a new sequence-based predictor for identification of intrinsically disordered protein with enhanced accuracy

内在无序蛋白质 计算生物学 蛋白质二级结构 序列(生物学) 蛋白质测序 蛋白质结构 功能(生物学) 折叠(DSP实现) 马修斯相关系数 化学 蛋白质折叠 蛋白质结构预测 肽序列 生物 生物系统 计算机科学 生物化学 遗传学 人工智能 支持向量机 电气工程 基因 工程类
作者
Deepak Chaurasiya,Rajkrishna Mondal,Tapobrata Lahiri,Asmita Tripathi,Tejas Ghinmine
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-9 被引量:1
标识
DOI:10.1080/07391102.2023.2290615
摘要

Discovery of intrinsically disordered proteins (IDPs) and protein hybrids that contain both intrinsically disordered protein regions (IDPRs) along with ordered regions has changed the sequence–structure–function paradigm of protein. These proteins with lack of persistently fixed structure are often found in all organisms and play vital roles in various biological processes. Some of them are considered as potential drug targets due to their overrepresentation in pathophysiological processes. The major bottlenecks for characterizing such proteins are their occasional overexpression, difficulty in getting purified homogeneous form and the challenge of investigating them experimentally. Sequence-based prediction of intrinsic disorder remains a useful strategy especially for many large-scale proteomic investigations. However, worst accuracy still occurs for short disordered regions with less than ten residues, for the residues close to order–disorder boundaries, for regions that undergo coupled folding and binding in presence of partner, and for prediction of fully disordered proteins. Annotation of fully disordered proteins mostly relies on the far-UV circular dichroism experiment which gives overall secondary structure composition without residue-level resolution. Current methods including that using secondary structure information failed to predict half of target IDPs correctly in the recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment. This study utilized profiles of random sequential appearance of physicochemical properties of amino acids and random sequential appearance of order and disorder promoting amino acids in protein together with the existing CIDER feature for the prediction of IDP from sequence input. Our method was found to significantly outperform the existing predictors across different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助温柔衬衫采纳,获得10
刚刚
星光熠熠完成签到 ,获得积分20
1秒前
顾矜应助嘘嘘采纳,获得10
2秒前
Double发布了新的文献求助10
2秒前
kkgaojing完成签到,获得积分20
2秒前
搜集达人应助haishuixing2采纳,获得10
4秒前
Yogita发布了新的文献求助10
4秒前
5秒前
纯真绿蕊完成签到,获得积分10
5秒前
沉淀完成签到,获得积分10
7秒前
snow完成签到,获得积分10
7秒前
7秒前
8秒前
深情安青应助李若伊采纳,获得10
9秒前
9秒前
老肖发布了新的文献求助10
9秒前
齐嫒琳发布了新的文献求助10
9秒前
9秒前
大个应助清123采纳,获得10
10秒前
12发布了新的文献求助10
11秒前
12秒前
细心采蓝完成签到,获得积分10
12秒前
ZZX完成签到,获得积分10
12秒前
浮游应助酷炫的紫山采纳,获得10
12秒前
LYj发布了新的文献求助10
12秒前
蛰曜发布了新的文献求助10
13秒前
大模型应助Mansis采纳,获得30
13秒前
17完成签到,获得积分10
14秒前
14秒前
FEI驳回了丘比特应助
14秒前
夏天应助能干数据线采纳,获得10
15秒前
16秒前
老肖完成签到,获得积分10
18秒前
19秒前
orixero应助17采纳,获得10
19秒前
20秒前
huan完成签到,获得积分10
20秒前
科研通AI6应助deng采纳,获得30
21秒前
21秒前
辛勤者应助exosome采纳,获得200
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548217
关于积分的说明 14212695
捐赠科研通 4468449
什么是DOI,文献DOI怎么找? 2449020
邀请新用户注册赠送积分活动 1439955
关于科研通互助平台的介绍 1416594