IDPpred: a new sequence-based predictor for identification of intrinsically disordered protein with enhanced accuracy

内在无序蛋白质 计算生物学 蛋白质二级结构 序列(生物学) 蛋白质测序 蛋白质结构 功能(生物学) 折叠(DSP实现) 马修斯相关系数 化学 蛋白质折叠 蛋白质结构预测 肽序列 生物 生物系统 计算机科学 生物化学 遗传学 人工智能 支持向量机 电气工程 基因 工程类
作者
Deepak Chaurasiya,Rajkrishna Mondal,Tapobrata Lahiri,Asmita Tripathi,Tejas Ghinmine
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-9 被引量:1
标识
DOI:10.1080/07391102.2023.2290615
摘要

Discovery of intrinsically disordered proteins (IDPs) and protein hybrids that contain both intrinsically disordered protein regions (IDPRs) along with ordered regions has changed the sequence–structure–function paradigm of protein. These proteins with lack of persistently fixed structure are often found in all organisms and play vital roles in various biological processes. Some of them are considered as potential drug targets due to their overrepresentation in pathophysiological processes. The major bottlenecks for characterizing such proteins are their occasional overexpression, difficulty in getting purified homogeneous form and the challenge of investigating them experimentally. Sequence-based prediction of intrinsic disorder remains a useful strategy especially for many large-scale proteomic investigations. However, worst accuracy still occurs for short disordered regions with less than ten residues, for the residues close to order–disorder boundaries, for regions that undergo coupled folding and binding in presence of partner, and for prediction of fully disordered proteins. Annotation of fully disordered proteins mostly relies on the far-UV circular dichroism experiment which gives overall secondary structure composition without residue-level resolution. Current methods including that using secondary structure information failed to predict half of target IDPs correctly in the recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment. This study utilized profiles of random sequential appearance of physicochemical properties of amino acids and random sequential appearance of order and disorder promoting amino acids in protein together with the existing CIDER feature for the prediction of IDP from sequence input. Our method was found to significantly outperform the existing predictors across different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LLL完成签到 ,获得积分10
刚刚
刚刚
草莓灰灰发布了新的文献求助10
刚刚
1秒前
1秒前
lily发布了新的文献求助10
2秒前
天天快乐应助GSD采纳,获得10
2秒前
阿林琳琳发布了新的文献求助10
2秒前
3秒前
Hello应助shinn采纳,获得10
4秒前
天天快乐应助结实红酒采纳,获得10
4秒前
明理丹云关注了科研通微信公众号
5秒前
完美世界应助sunzhuxi采纳,获得10
5秒前
蛋子s完成签到,获得积分10
5秒前
5秒前
LXP完成签到,获得积分10
6秒前
6秒前
所所应助wangyuchen采纳,获得10
6秒前
7秒前
7秒前
FashionBoy应助le采纳,获得30
7秒前
赫幼蓉完成签到,获得积分10
8秒前
丘比特应助负责友易采纳,获得10
8秒前
醋溜爆肚儿完成签到,获得积分10
10秒前
10秒前
10秒前
隐形曼青应助今晚打老虎采纳,获得10
11秒前
zj完成签到 ,获得积分10
11秒前
Codonopsis完成签到,获得积分10
11秒前
蛋子s发布了新的文献求助10
11秒前
贝贝完成签到,获得积分10
12秒前
在水一方应助an采纳,获得10
12秒前
SYLH应助Master_Ye采纳,获得10
13秒前
川木发布了新的文献求助10
13秒前
13秒前
neinei完成签到,获得积分10
14秒前
文武贝完成签到,获得积分10
14秒前
15秒前
笑笑二儿发布了新的文献求助30
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993