IDPpred: a new sequence-based predictor for identification of intrinsically disordered protein with enhanced accuracy

内在无序蛋白质 计算生物学 蛋白质二级结构 序列(生物学) 蛋白质测序 蛋白质结构 功能(生物学) 折叠(DSP实现) 马修斯相关系数 化学 蛋白质折叠 蛋白质结构预测 肽序列 生物 生物系统 计算机科学 生物化学 遗传学 人工智能 支持向量机 电气工程 基因 工程类
作者
Deepak Chaurasiya,Rajkrishna Mondal,Tapobrata Lahiri,Asmita Tripathi,Tejas Ghinmine
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-9 被引量:1
标识
DOI:10.1080/07391102.2023.2290615
摘要

Discovery of intrinsically disordered proteins (IDPs) and protein hybrids that contain both intrinsically disordered protein regions (IDPRs) along with ordered regions has changed the sequence–structure–function paradigm of protein. These proteins with lack of persistently fixed structure are often found in all organisms and play vital roles in various biological processes. Some of them are considered as potential drug targets due to their overrepresentation in pathophysiological processes. The major bottlenecks for characterizing such proteins are their occasional overexpression, difficulty in getting purified homogeneous form and the challenge of investigating them experimentally. Sequence-based prediction of intrinsic disorder remains a useful strategy especially for many large-scale proteomic investigations. However, worst accuracy still occurs for short disordered regions with less than ten residues, for the residues close to order–disorder boundaries, for regions that undergo coupled folding and binding in presence of partner, and for prediction of fully disordered proteins. Annotation of fully disordered proteins mostly relies on the far-UV circular dichroism experiment which gives overall secondary structure composition without residue-level resolution. Current methods including that using secondary structure information failed to predict half of target IDPs correctly in the recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment. This study utilized profiles of random sequential appearance of physicochemical properties of amino acids and random sequential appearance of order and disorder promoting amino acids in protein together with the existing CIDER feature for the prediction of IDP from sequence input. Our method was found to significantly outperform the existing predictors across different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秉朔完成签到,获得积分10
刚刚
oldblack完成签到,获得积分10
1秒前
取昵称好难完成签到,获得积分10
1秒前
2秒前
orixero应助陈吕婷采纳,获得30
3秒前
Aliya完成签到 ,获得积分10
5秒前
SciGPT应助壮观的大船采纳,获得10
5秒前
单薄归尘完成签到 ,获得积分10
6秒前
Sherry完成签到,获得积分10
7秒前
星辰大海应助Dear77采纳,获得10
7秒前
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
tuanheqi应助科研通管家采纳,获得150
8秒前
852应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
dreamlightzy应助科研通管家采纳,获得10
8秒前
热心子轩应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
dpshi应助科研通管家采纳,获得10
9秒前
科研通AI6应助本质长青采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Jasper应助木佑采纳,获得10
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
宣邹应助科研通管家采纳,获得20
9秒前
李健应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
Ganfei完成签到,获得积分20
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
丰富山灵完成签到 ,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
dreamlightzy应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258