IDPpred: a new sequence-based predictor for identification of intrinsically disordered protein with enhanced accuracy

内在无序蛋白质 计算生物学 蛋白质二级结构 序列(生物学) 蛋白质测序 蛋白质结构 功能(生物学) 折叠(DSP实现) 马修斯相关系数 化学 蛋白质折叠 蛋白质结构预测 肽序列 生物 生物系统 计算机科学 生物化学 遗传学 人工智能 支持向量机 电气工程 基因 工程类
作者
Deepak Chaurasiya,Rajkrishna Mondal,Tapobrata Lahiri,Asmita Tripathi,Tejas Ghinmine
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-9 被引量:1
标识
DOI:10.1080/07391102.2023.2290615
摘要

Discovery of intrinsically disordered proteins (IDPs) and protein hybrids that contain both intrinsically disordered protein regions (IDPRs) along with ordered regions has changed the sequence–structure–function paradigm of protein. These proteins with lack of persistently fixed structure are often found in all organisms and play vital roles in various biological processes. Some of them are considered as potential drug targets due to their overrepresentation in pathophysiological processes. The major bottlenecks for characterizing such proteins are their occasional overexpression, difficulty in getting purified homogeneous form and the challenge of investigating them experimentally. Sequence-based prediction of intrinsic disorder remains a useful strategy especially for many large-scale proteomic investigations. However, worst accuracy still occurs for short disordered regions with less than ten residues, for the residues close to order–disorder boundaries, for regions that undergo coupled folding and binding in presence of partner, and for prediction of fully disordered proteins. Annotation of fully disordered proteins mostly relies on the far-UV circular dichroism experiment which gives overall secondary structure composition without residue-level resolution. Current methods including that using secondary structure information failed to predict half of target IDPs correctly in the recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment. This study utilized profiles of random sequential appearance of physicochemical properties of amino acids and random sequential appearance of order and disorder promoting amino acids in protein together with the existing CIDER feature for the prediction of IDP from sequence input. Our method was found to significantly outperform the existing predictors across different datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕可燕完成签到,获得积分10
刚刚
1秒前
小蘑菇应助刚国忠采纳,获得10
1秒前
mylove应助Sid采纳,获得10
2秒前
承乐发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
王宽宽宽完成签到,获得积分10
4秒前
4秒前
科研通AI6应助13nnk采纳,获得10
5秒前
程昌盛完成签到,获得积分10
5秒前
Aprilapple发布了新的文献求助10
5秒前
6秒前
华仔应助一十六采纳,获得10
6秒前
6秒前
完美世界应助王彦林采纳,获得10
6秒前
去玩儿完成签到,获得积分20
7秒前
7秒前
王宽宽宽发布了新的文献求助10
7秒前
lwq发布了新的文献求助10
7秒前
Grace完成签到,获得积分10
8秒前
华仔应助YaHaa采纳,获得10
9秒前
滕可燕发布了新的文献求助10
9秒前
爆米花应助陈甜甜采纳,获得10
10秒前
摆烂小鱼鱼完成签到 ,获得积分10
10秒前
Lucas应助韩麒嘉采纳,获得10
10秒前
10秒前
10秒前
11秒前
Niuniu完成签到,获得积分10
11秒前
裴裴驳回了珏晴应助
11秒前
12秒前
12秒前
12秒前
12秒前
Aprilapple完成签到,获得积分10
12秒前
13秒前
song发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836