IDPpred: a new sequence-based predictor for identification of intrinsically disordered protein with enhanced accuracy

内在无序蛋白质 计算生物学 蛋白质二级结构 序列(生物学) 蛋白质测序 蛋白质结构 功能(生物学) 折叠(DSP实现) 马修斯相关系数 化学 蛋白质折叠 蛋白质结构预测 肽序列 生物 生物系统 计算机科学 生物化学 遗传学 人工智能 支持向量机 工程类 电气工程 基因
作者
Deepak Chaurasiya,Rajkrishna Mondal,Tapobrata Lahiri,Asmita Tripathi,Tejas Ghinmine
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-9 被引量:1
标识
DOI:10.1080/07391102.2023.2290615
摘要

Discovery of intrinsically disordered proteins (IDPs) and protein hybrids that contain both intrinsically disordered protein regions (IDPRs) along with ordered regions has changed the sequence–structure–function paradigm of protein. These proteins with lack of persistently fixed structure are often found in all organisms and play vital roles in various biological processes. Some of them are considered as potential drug targets due to their overrepresentation in pathophysiological processes. The major bottlenecks for characterizing such proteins are their occasional overexpression, difficulty in getting purified homogeneous form and the challenge of investigating them experimentally. Sequence-based prediction of intrinsic disorder remains a useful strategy especially for many large-scale proteomic investigations. However, worst accuracy still occurs for short disordered regions with less than ten residues, for the residues close to order–disorder boundaries, for regions that undergo coupled folding and binding in presence of partner, and for prediction of fully disordered proteins. Annotation of fully disordered proteins mostly relies on the far-UV circular dichroism experiment which gives overall secondary structure composition without residue-level resolution. Current methods including that using secondary structure information failed to predict half of target IDPs correctly in the recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment. This study utilized profiles of random sequential appearance of physicochemical properties of amino acids and random sequential appearance of order and disorder promoting amino acids in protein together with the existing CIDER feature for the prediction of IDP from sequence input. Our method was found to significantly outperform the existing predictors across different datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助qq采纳,获得10
2秒前
归尘发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
安静秋柔完成签到,获得积分10
4秒前
悦耳若云发布了新的文献求助10
4秒前
YUU发布了新的文献求助10
4秒前
顾矜应助lili采纳,获得10
5秒前
月色完成签到,获得积分10
5秒前
5秒前
彭于晏应助ah爱科研采纳,获得10
5秒前
5秒前
5秒前
shinubi发布了新的文献求助10
5秒前
7秒前
liuran完成签到,获得积分10
7秒前
7秒前
鄂问玉发布了新的文献求助10
9秒前
9秒前
悦耳若云完成签到,获得积分20
9秒前
桐桐应助juckblack采纳,获得10
9秒前
包容的奇异果完成签到,获得积分10
9秒前
10秒前
深情板凳发布了新的文献求助10
10秒前
活力凡雁发布了新的文献求助10
11秒前
江小北发布了新的文献求助10
11秒前
龙1发布了新的文献求助10
12秒前
zwenng发布了新的文献求助10
12秒前
12秒前
Orange应助WX采纳,获得10
12秒前
orixero应助旺旺碎冰冰采纳,获得10
12秒前
13秒前
芒果也疯狂完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961