5MART: A 5G SMART Scheduling Framework for Optimizing QoS Through Reinforcement Learning

计算机科学 强化学习 服务质量 分布式计算 调度(生产过程) 计算机网络 供应 动态优先级调度 人工智能 运营管理 经济
作者
Ioan-Sorin Comşa,Ramona Trestian,Gabriel‐Miro Muntean,Gheorghiţă Ghinea
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:17 (2): 1110-1124 被引量:31
标识
DOI:10.1109/tnsm.2019.2960849
摘要

The massive growth in mobile data traffic and the heterogeneity and stringency of Quality of Service (QoS) requirements of various applications have put significant pressure on the underlying network infrastructure and represent an important challenge even for the very anticipated 5G networks. In this context, the solution is to employ smart Radio Resource Management (RRM) in general and innovative packet scheduling in particular in order to offer high flexibility and cope with both current and upcoming QoS challenges. Given the increasing demand for bandwidth-hungry applications, conventional scheduling strategies face significant problems in meeting the heterogeneous QoS requirements of various application classes under dynamic network conditions. This paper proposes 5MART, a 5G smart scheduling framework that manages the QoS provisioning for heterogeneous traffic. Reinforcement learning and neural networks are jointly used to find the most suitable scheduling decisions based on current networking conditions. Simulation results show that the proposed 5MART framework can achieve up to 50% improvement in terms of time fraction (in sub-frames) when the heterogeneous QoS constraints are met with respect to other state-of-the-art scheduling solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Rafayel采纳,获得10
1秒前
1秒前
Sallyshen完成签到 ,获得积分10
3秒前
运气爆棚发布了新的文献求助20
3秒前
3秒前
4秒前
汉堡包应助hd采纳,获得10
4秒前
liao应助ste采纳,获得10
5秒前
xxfsx应助ste采纳,获得10
5秒前
Shengang完成签到,获得积分10
6秒前
6秒前
二十一完成签到,获得积分10
7秒前
科研通AI6应助闫闫采纳,获得10
9秒前
硝基发布了新的文献求助10
9秒前
小二郎应助落花生采纳,获得20
10秒前
西西完成签到 ,获得积分10
10秒前
12秒前
12秒前
英姑应助小巧的若云采纳,获得10
12秒前
共享精神应助LL采纳,获得10
14秒前
李健的小迷弟应助肥鹤采纳,获得10
15秒前
彭于晏应助沈迎南采纳,获得10
15秒前
之之完成签到,获得积分10
15秒前
yy发布了新的文献求助30
17秒前
18秒前
CipherSage应助硝基采纳,获得10
18秒前
18秒前
19秒前
honghuhe发布了新的文献求助30
19秒前
852应助运气比较好采纳,获得10
19秒前
别管我了应助Joey采纳,获得30
20秒前
上官若男应助羞涩的寒松采纳,获得10
21秒前
情怀应助mouse_velocity采纳,获得10
22秒前
22秒前
22秒前
领导范儿应助牛牛采纳,获得10
23秒前
24秒前
1234发布了新的文献求助10
24秒前
24秒前
张姐发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474