植物化学
化学
阿卡波糖
乙酰胆碱酯酶
对接(动物)
酶
IC50型
体外
生物化学
一氧化氮
萜烯
抗氧化剂
立体化学
有机化学
医学
护理部
作者
Nguyen Ngoc Tuan,Huong Nguyen Thi,Chau Le Thi My,Tang Xuan Hai,Hieu Tran-Trung,Anh Nguyen Thi Kim,Thanh Nguyen Tan,Lê Văn Tân,Cuong Q. Nguyen,Quang De Tran,Ping Chung Kuo,Quang Lê Đăng,Trân Đình Thăng
出处
期刊:Plants
[MDPI AG]
日期:2022-01-30
卷期号:11 (3): 388-388
被引量:6
标识
DOI:10.3390/plants11030388
摘要
The phytochemical constituents from the roots of Millettia speciosa were investigated by chromatographic isolation, and their chemical structures were characterized using the MS and NMR spectroscopic methods. A total of 10 compounds, including six triterpenoids, two flavonoids, and two phenolic compounds, were identified from the roots of M. speciosa. Out of the isolated compounds, eight showed inhibitory effects on NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, with IC50 values ranging from 43.9 to 449.5 µg/mL. Ursane-type triterpenes significantly suppressed NO production compared to the remaining compounds. In addition, these compounds also exhibited remarkable inhibitory effects on α-glucosidase. Among the tested compounds, 4, 5, and 10 exhibited excellent α-glucosidase inhibition, with IC50 values ranging from 1.1 to 2.2 µg/mL. Almost all of the test compounds showed little or no acetylcholinesterase inhibition, except for 5, which showed moderate anti-acetylcholinesterase activity in vitro. The molecular docking study of α-glucosidase inhibition by 3-5 and 10 was conducted to observe the interactions of these molecules with the enzyme. Compounds 4, 5, and 10 exhibited a better binding affinity toward the targeted receptor and the H-bond interactions located at the entrance of the enzyme active site pocket in comparison to those of 3 and the positive control acarbose. Our findings evidence the pharmacological potential of this species and suggest that the phytochemicals derived from the roots of M. speciosa may be promising lead molecules for further studies on the development of anti-inflammatory and anti-diabetes drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI