过电位
电池(电)
材料科学
电极
电解质
多孔性
纳米技术
计算机科学
电化学
复合材料
热力学
化学
物理
物理化学
功率(物理)
作者
Zhiqiang Chen,Dmitri L. Danilov,Rüdiger‐A. Eichel,Peter H. L. Notten
标识
DOI:10.1002/aenm.202201506
摘要
Abstract Battery modeling has become increasingly important with the intensive development of Li‐ion batteries (LIBs). The porous electrode model, relating battery performances to the internal physical and (electro)chemical processes, is one of the most adopted models in scientific research and engineering fields. Since Newman and coworkers’ first implementation in the 1990s, the porous electrode model has kept its general form. Soon after that, many publications have focused on the applications to LIBs. In this review, the applications of the porous electrode model to LIBs are systematically summarized and discussed. With this model, various internal battery properties have been studied, such as Li + concentration and electric potential in the electrolyte and electrodes, reaction rate distribution, overpotential, and impedance. When coupled with thermal, mechanical, and aging models, the porous electrode model can simulate the temperature and stress distribution inside batteries and predict degradation during battery operation. With the help of state observers, the porous electrode model can monitor various battery states in real‐time for battery management systems. Even though the porous electrode models have multiple advantages, some challenges and limitations still have to be addressed. The present review also gives suggestions to overcome these limitations in future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI