A multimodel ensemble machine learning approach for CMIP6 climate model projections in an Indian River basin

耦合模型比对项目 支持向量机 随机森林 稳健性(进化) 公制(单位) 流域 人工神经网络 计算机科学 降水 大气环流模式 环境科学 机器学习 气候学 人工智能 气象学 气候变化 地图学 地理 生态学 生物化学 化学 运营管理 基因 经济 生物 地质学
作者
Aiendrila Dey,Debi Prasad Sahoo,Rohini Kumar,Renji Remesan
出处
期刊:International Journal of Climatology [Wiley]
卷期号:42 (16): 9215-9236 被引量:32
标识
DOI:10.1002/joc.7813
摘要

Abstract Multimodel ensemble (MME) approach would help modellers to know the advantages of individual global circulation models (GCMs) and to avoid the weaknesses associated with them, and it would help the river basin modellers to make appropriate modelling decisions. The study highlights the river basin‐scale development of MME as a convenient way to reduce the parameter and structural uncertainties in the Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs simulations after identifying the best five CMIP6 GCMs based on the rating metric calculations. Furthermore, the performance of the MME was enhanced by integrating three machine learning algorithms (artificial neural network [ANN], random forest [RF], support vector machine [SVM]). Subsequently, comparative assessment depicted the improved performance in MME‐integrated ML algorithms compared to simple arithmetic mean (SAM) in simulating observed precipitation ( P ), maximum temperature ( T max ), and minimum temperature ( T min ) over the Damodar River basin (DRB), India. The statistical metrics indicate that the SVM and RF methods yielded better results than SAM and ANN methods, thus selected for future projections. The robustness of the MME‐RF and MME‐SVM approach has also been observed while capturing the spatial pattern as IMD‐observed with well representation of climate indices for both wet and dry seasons. Future projections with MME‐SVM and MME‐RF suggested a possible rise in mean annual P in the range of 1.4–15% and 6.8–39% with an increasing trend in temperature ( T max , T min ) under the SSP245 and SSP585 scenarios, respectively. Replicating the spatial pattern of the future climatic variables projections evinced a warmer and drier climate in the southwest part of the DRB for both SSP scenarios during wet and dry season and thence warned a probable drier condition on the southwest part of the DRB in future time slices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李亚楠完成签到,获得积分10
1秒前
ZZY关闭了ZZY文献求助
1秒前
AG杰完成签到 ,获得积分20
2秒前
量子星尘发布了新的文献求助10
4秒前
工艺员发布了新的文献求助10
4秒前
Amy完成签到,获得积分10
5秒前
gww发布了新的文献求助10
6秒前
张献忠完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
CipherSage应助zerovb3采纳,获得10
8秒前
解语花发布了新的文献求助50
11秒前
11秒前
11秒前
健壮问枫发布了新的文献求助30
12秒前
12秒前
13秒前
缘起缘灭完成签到,获得积分10
15秒前
不烦发布了新的文献求助10
15秒前
xin发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
思源应助mahliya采纳,获得10
16秒前
小胡发布了新的文献求助10
17秒前
木头马尾应助勤恳的画笔采纳,获得10
18秒前
深情安青应助sjy采纳,获得10
20秒前
21秒前
Anderson123发布了新的文献求助10
24秒前
星辰大海应助Chenyan775199采纳,获得10
25秒前
Ava应助hjjjjj1采纳,获得10
25秒前
26秒前
乐乐应助路冰采纳,获得10
26秒前
26秒前
27秒前
爆米花应助积极的靖荷采纳,获得10
27秒前
不想再哭完成签到,获得积分10
28秒前
小白发布了新的文献求助10
29秒前
工艺员完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590231
求助须知:如何正确求助?哪些是违规求助? 4005083
关于积分的说明 12400271
捐赠科研通 3682147
什么是DOI,文献DOI怎么找? 2029449
邀请新用户注册赠送积分活动 1063022
科研通“疑难数据库(出版商)”最低求助积分说明 948604