A multimodel ensemble machine learning approach for CMIP6 climate model projections in an Indian River basin

耦合模型比对项目 支持向量机 随机森林 稳健性(进化) 公制(单位) 流域 人工神经网络 计算机科学 降水 大气环流模式 环境科学 机器学习 气候学 人工智能 气象学 气候变化 地图学 地理 地质学 基因 生物 经济 生物化学 运营管理 化学 生态学
作者
Aiendrila Dey,Debi Prasad Sahoo,Rohini Kumar,Renji Remesan
出处
期刊:International Journal of Climatology [Wiley]
卷期号:42 (16): 9215-9236 被引量:32
标识
DOI:10.1002/joc.7813
摘要

Abstract Multimodel ensemble (MME) approach would help modellers to know the advantages of individual global circulation models (GCMs) and to avoid the weaknesses associated with them, and it would help the river basin modellers to make appropriate modelling decisions. The study highlights the river basin‐scale development of MME as a convenient way to reduce the parameter and structural uncertainties in the Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs simulations after identifying the best five CMIP6 GCMs based on the rating metric calculations. Furthermore, the performance of the MME was enhanced by integrating three machine learning algorithms (artificial neural network [ANN], random forest [RF], support vector machine [SVM]). Subsequently, comparative assessment depicted the improved performance in MME‐integrated ML algorithms compared to simple arithmetic mean (SAM) in simulating observed precipitation ( P ), maximum temperature ( T max ), and minimum temperature ( T min ) over the Damodar River basin (DRB), India. The statistical metrics indicate that the SVM and RF methods yielded better results than SAM and ANN methods, thus selected for future projections. The robustness of the MME‐RF and MME‐SVM approach has also been observed while capturing the spatial pattern as IMD‐observed with well representation of climate indices for both wet and dry seasons. Future projections with MME‐SVM and MME‐RF suggested a possible rise in mean annual P in the range of 1.4–15% and 6.8–39% with an increasing trend in temperature ( T max , T min ) under the SSP245 and SSP585 scenarios, respectively. Replicating the spatial pattern of the future climatic variables projections evinced a warmer and drier climate in the southwest part of the DRB for both SSP scenarios during wet and dry season and thence warned a probable drier condition on the southwest part of the DRB in future time slices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助DBT采纳,获得10
刚刚
1秒前
orixero应助SDSD采纳,获得10
1秒前
2秒前
2秒前
mxzl发布了新的文献求助20
2秒前
cocolu应助科研通管家采纳,获得20
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
ceeray23应助科研通管家采纳,获得10
4秒前
MchemG应助科研通管家采纳,获得10
4秒前
枯叶蝶发布了新的文献求助10
5秒前
ForestEcho发布了新的文献求助10
6秒前
6秒前
haosu完成签到 ,获得积分10
7秒前
8秒前
森气发布了新的文献求助10
8秒前
朝歌完成签到,获得积分10
10秒前
10秒前
完美世界应助万幸鹿采纳,获得10
10秒前
11秒前
hykkk完成签到,获得积分20
13秒前
nsc发布了新的文献求助10
14秒前
shu发布了新的文献求助10
14秒前
天真怜晴发布了新的文献求助10
14秒前
冷傲的自行车关注了科研通微信公众号
15秒前
15秒前
timikk发布了新的文献求助10
15秒前
16秒前
科研强发布了新的文献求助10
16秒前
枯叶蝶完成签到,获得积分10
16秒前
17秒前
LEE123发布了新的文献求助10
19秒前
SYLH应助B站萧亚轩采纳,获得10
20秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443790
求助须知:如何正确求助?哪些是违规求助? 3039911
关于积分的说明 8978905
捐赠科研通 2728452
什么是DOI,文献DOI怎么找? 1496524
科研通“疑难数据库(出版商)”最低求助积分说明 691689
邀请新用户注册赠送积分活动 689221