卵巢
炎症
卵泡闭锁
生物
卵泡膜
内分泌学
细胞因子
内科学
卵泡
免疫学
医学
作者
Kunyang Liu,Xiaonan Zhao,Meihong Guo,Jinling Zhu,Dongmei Li,Jie Ding,Xiaodong Han,Jiang Wu
标识
DOI:10.1016/j.toxlet.2022.01.003
摘要
Early experimental studies have demonstrated that microcystin-leucine arginine (MC-LR) is able to induce multiple organ damage. Female reproductive disorders caused by MC-LR have attracted increased attention in recent years. However, the underlying mechanisms of female reproductive malfunctions are not yet fully understood. Our previous study confirmed that MC-LR could enter mice ovary, induce apoptosis of ovarian granulosa cell and lead to follicular atresia. Research shows that ovary inflammation is positively related to the decline of female reproductive function. This study was aimed to find out the relationship between inflammation response and ovarian injury caused by MC-LR. MC-LR were administrated at 0, 7.5, 22.5 and 45 μg/kg for two weeks by intraperitoneal injection in female BALB/c mice. Histopathological analysis of ovary was performed. We found that MC-LR exposure induced inflammation response and fibrosis in ovary. In the present study, we observed that MC-LR could enter ovary and was mainly distributed in mGCs (mouse ovarian granulosa cells), but not in the theca-interstitial cells. We isolated and cultured mGCs with different concentrations of MC-LR at 0, 0.01, 0.1, 1 and 10 μM. MC-LR exposure caused mitochondrial DNA (mtDNA) leakage which was detected by qPCR andimmunofluorescence staining. Subsequently, mtDNA leakage activated cGAS-STING signaling, leading to elevated production of inflammatory cytokines TNF-α in mGCs.Diffusion of TNF-α in ovary resulted in inflammatory cell infiltration and interstitial cell proliferation. Ovarian inflammation provides a new perspective to explore the underlying mechanisms associated with MC-LR-induced female reproductive dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI