Atomic Mechanism of Electrocatalytically Active Co–N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction

石墨烯 过电位 电催化剂 催化作用 材料科学 铂金 掺杂剂 纳米技术 离解(化学) 化学工程 无机化学 兴奋剂 化学 物理化学 电极 电化学 有机化学 光电子学 工程类
作者
Feng Li,Haibo Shu,Chenli Hu,Zhaoyi Shi,Xintong Liu,Pei Liang,Xiaohong Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:7 (49): 27405-27413 被引量:148
标识
DOI:10.1021/acsami.5b09169
摘要

Superior catalytic activity and high chemical stability of inexpensive electrocatalysts for the oxygen reduction reaction (ORR) are crucial to the large-scale practical application of fuel cells. The nonprecious metal/N modified graphene electrocatalysts are regarded as one of potential candidates, and the further enhancement of their catalytic activity depends on improving active reaction sites at not only graphene edges but also its basal plane. Herein, the ORR mechanism and reaction pathways of Co–N co-doping onto the graphene basal plane have been studied by using first-principles calculations and ab initio molecular dynamics simulations. Compared to singly N-doped and Co-doped graphenes, the Co–N co-doped graphene surface exhibits superior ORR activity and the selectivity toward a four-electron reduction pathway. The result originates from catalytic sites of the graphene surface being modified by the hybridization between Co 3d states and N 2p states, resulting in the catalyst with a moderate binding ability to oxygenated intermediates. Hence, introducing the Co–N4 complex onto the graphene basal plane facilitates the activation of O2 dissociation and the desorption of H2O during the ORR, which is responsible for the electrocatalyst with a smaller ORR overpotential (∼1.0 eV) that is lower than that of Co-doped graphene by 0.93 eV. Our results suggest that the Co–N co-doped graphene is able to compete against platinum-based electrocatalysts, and the greater efficient electrocatalysts can be realized by carefully optimizing the coupling between transition metal and nonmetallic dopants in the graphene basal plane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助llll采纳,获得10
1秒前
充电宝应助tt采纳,获得10
1秒前
1秒前
1秒前
ShuyueXue发布了新的文献求助10
1秒前
TOF完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
2秒前
ju龙哥发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
米酒完成签到,获得积分10
4秒前
qiuyue发布了新的文献求助10
5秒前
zxm发布了新的文献求助30
5秒前
zq123发布了新的文献求助10
6秒前
小蘑菇应助dududu采纳,获得10
6秒前
搜集达人应助诚心的傲芙采纳,获得10
6秒前
桐桐应助wxr采纳,获得10
6秒前
ZhouTY发布了新的文献求助10
7秒前
AJY完成签到,获得积分10
7秒前
bkagyin应助优雅的白山采纳,获得10
7秒前
7秒前
852应助欢喜的荔枝采纳,获得10
8秒前
8秒前
小紫薯发布了新的文献求助10
8秒前
羊颜完成签到,获得积分10
8秒前
9秒前
熊Xi发布了新的文献求助10
9秒前
脑洞疼应助shuang0116采纳,获得10
10秒前
10秒前
深情安青应助高骏伟采纳,获得10
10秒前
11秒前
羊颜发布了新的文献求助10
12秒前
SciGPT应助ShuyueXue采纳,获得10
12秒前
12秒前
12秒前
甄的艾你完成签到,获得积分10
13秒前
xyzlancet发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473983
求助须知:如何正确求助?哪些是违规求助? 3066333
关于积分的说明 9098686
捐赠科研通 2757569
什么是DOI,文献DOI怎么找? 1513039
邀请新用户注册赠送积分活动 699314
科研通“疑难数据库(出版商)”最低求助积分说明 698909