Hardware IP Trust Validation: Learn (the Untrustworthy), and Verify

特洛伊木马 硬件特洛伊木马 计算机科学 分类器(UML) 实施 机器学习 对手 对抗制 人工智能 嵌入式系统 计算机工程 计算机安全 软件工程
作者
Tamzidul Hoque,Jonathan Cruz,Prabuddha Chakraborty,Swarup Bhunia
标识
DOI:10.1109/test.2018.8624727
摘要

Increasing reliance on hardware Intellectual Property (IP) cores in modern system-on-chip (SoC) design flow, often obtained from untrusted vendors distributed across the globe, can significantly compromise the security of SoCs. While the design could be verified for a specified functionality using existing tools, it is extremely hard to verify its trustworthiness to guarantee that no hidden, and possibly malicious function exists in the form of a hardware Trojan. Conventional verification process and tools fail to verify the trust of a third-party IP, primarily due to the lack of trusted reference design or golden models. In this paper, for the first time to our knowledge, we introduce a systematic framework to apply machine learning based classification for hardware IP trust verification. A supervised classifier could be trained for identifying Trojan nets within a suspect IP, but the detection coverage and accuracy are extremely sensitive to the quality of training set available. Furthermore, reliance on a static training database limits the classifier's ability in detecting new Trojans and facilitates adversarial learning. The proposed framework includes a Trojan insertion tool that dynamically generates a large number of diverse implementations of Trojan classes for creating a robust training set. It is significantly more difficult for an adversary to evade our classifier using known Trojan classes since the tool dynamically samples the entire Trojan population. To further improve the efficiency of the system, we combined three machine learning models into an average probability Voting Ensemble. Our results for two broad classes of Trojan show excellent classification accuracy of 99.69% and 99.88% with F-score of 86.69% and 88.37% for sequential and combinational Trojans, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJ完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
领导范儿应助zkl采纳,获得10
3秒前
科研通AI2S应助yy采纳,获得10
3秒前
3秒前
3秒前
3秒前
zoe发布了新的文献求助10
4秒前
飞飞发布了新的文献求助10
4秒前
烤豆腐发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
mofarah发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
科研通AI5应助qq采纳,获得10
11秒前
顾矜应助一一一多采纳,获得10
11秒前
12秒前
12秒前
12秒前
深海鳕鱼子完成签到,获得积分10
12秒前
JamesPei应助欢呼的莆采纳,获得10
13秒前
烤豆腐完成签到,获得积分10
13秒前
13秒前
皓月完成签到,获得积分10
13秒前
13秒前
13秒前
谦让疾发布了新的文献求助10
14秒前
尕辉发布了新的文献求助10
14秒前
科研通AI2S应助ash采纳,获得10
14秒前
靖123456发布了新的文献求助10
15秒前
l玖发布了新的文献求助10
15秒前
李爱国应助Jack采纳,获得10
15秒前
科研通AI5应助xs采纳,获得10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589512
求助须知:如何正确求助?哪些是违规求助? 3157716
关于积分的说明 9517049
捐赠科研通 2860807
什么是DOI,文献DOI怎么找? 1572014
邀请新用户注册赠送积分活动 737653
科研通“疑难数据库(出版商)”最低求助积分说明 722463