球霰石
生物矿化
方解石
碳酸钙
胞外聚合物
化学
结晶
生物膜
化学工程
钙
生物物理学
碳酸盐
矿物学
细菌
文石
地质学
生物
有机化学
工程类
古生物学
作者
David N. Azulay,Razan Abbasi,Ilanit Ben Simhon Ktorza,Sergei Remennik,Amarendar Reddy M,Liraz Chai
标识
DOI:10.1021/acs.cgd.8b00888
摘要
Biomineralization is a mineral precipitation process occurring in the presence of organic molecules and used by various organisms to serve a structural and/or a functional role. Many biomineralization processes occur in the presence of extracellular matrices that are composed of proteins and polysaccharides. Recently, there is growing evidence that bacterial biofilms induce CaCO3 mineralization and that this process may be related with their extracellular matrix (ECM). In this study we explore, in vitro, the effect of two bacterial ECM proteins, TasA and TapA, and an exopolysaccharide, EPS, on calcium carbonate crystallization. We have found that all the three biopolymers induce the formation of complex CaCO3 structures. The crystals formed in the presence of the EPS are very diverse in morphology and they are either calcite or vaterite in structure. However, more uniformly sized calcite crystals are formed in the presence of the proteins; these crystals are composed of single crystalline domains that assemble together into spherulites (in the presence of TapA) or dumbbell-like shapes (in the presence of TasA). Our results suggest the EPS affects the nucleation of calcium carbonate when it induces the formation of vaterite crystals and that unlike EPS, the proteins stabilize preformed calcite nuclei and induce their aggregation into complex calcite structures. Biomineralization processes induced by bacterial ECM macromolecules make biofilms more robust and difficult to remove when they form, for example, on pipes and filters in water desalination systems or on ship hulls. Understanding the formation conditions and mechanism of formation of calcium carbonate in the presence of bacterial biopolymers may lead to the design of suitable mineralization inhibitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI