已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diabetic retinopathy screening in the emerging era of artificial intelligence

糖尿病性视网膜病变 医学 远程医疗 眼底摄影 视网膜病变 验光服务 糖尿病 眼底(子宫) 眼科 人工智能 计算机科学 医疗保健 视网膜 荧光血管造影 内分泌学 经济 经济增长
作者
Jakob Grauslund
出处
期刊:Diabetologia [Springer Science+Business Media]
卷期号:65 (9): 1415-1423 被引量:60
标识
DOI:10.1007/s00125-022-05727-0
摘要

Diabetic retinopathy is a frequent complication in diabetes and a leading cause of visual impairment. Regular eye screening is imperative to detect sight-threatening stages of diabetic retinopathy such as proliferative diabetic retinopathy and diabetic macular oedema in order to treat these before irreversible visual loss occurs. Screening is cost-effective and has been implemented in various countries in Europe and elsewhere. Along with optimised diabetes care, this has substantially reduced the risk of visual loss. Nevertheless, the growing number of patients with diabetes poses an increasing burden on healthcare systems and automated solutions are needed to alleviate the task of screening and improve diagnostic accuracy. Deep learning by convolutional neural networks is an optimised branch of artificial intelligence that is particularly well suited to automated image analysis. Pivotal studies have demonstrated high sensitivity and specificity for classifying advanced stages of diabetic retinopathy and identifying diabetic macular oedema in optical coherence tomography scans. Based on this, different algorithms have obtained regulatory approval for clinical use and have recently been implemented to some extent in a few countries. Handheld mobile devices are another promising option for self-monitoring, but so far they have not demonstrated comparable image quality to that of fundus photography using non-portable retinal cameras, which is the gold standard for diabetic retinopathy screening. Such technology has the potential to be integrated in telemedicine-based screening programmes, enabling self-captured retinal images to be transferred virtually to reading centres for analysis and planning of further steps. While emerging technologies have shown a lot of promise, clinical implementation has been sparse. Legal obstacles and difficulties in software integration may partly explain this, but it may also indicate that existing algorithms may not necessarily integrate well with national screening initiatives, which often differ substantially between countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮完成签到 ,获得积分10
4秒前
5秒前
LIM完成签到,获得积分10
7秒前
9秒前
田様应助nicheng采纳,获得10
10秒前
hizy完成签到,获得积分10
11秒前
LIM发布了新的文献求助10
12秒前
13秒前
英姑应助姜天佑采纳,获得10
14秒前
顾矜应助guan采纳,获得80
17秒前
22秒前
nicheng完成签到,获得积分10
24秒前
nicheng发布了新的文献求助10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
情怀应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
32秒前
小野发布了新的文献求助10
33秒前
传奇3应助清秀灵薇采纳,获得10
35秒前
科研通AI2S应助Marciu33采纳,获得10
37秒前
37秒前
40秒前
专注雁桃发布了新的文献求助10
40秒前
科研通AI5应助李李采纳,获得10
43秒前
华仔应助专注雁桃采纳,获得10
45秒前
YY发布了新的文献求助10
47秒前
49秒前
51秒前
51秒前
林狗完成签到 ,获得积分10
53秒前
HUI完成签到,获得积分10
54秒前
54秒前
姜天佑发布了新的文献求助10
55秒前
子郁完成签到 ,获得积分10
58秒前
WEI发布了新的文献求助10
59秒前
Hello应助温柔樱桃采纳,获得10
1分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725215
求助须知:如何正确求助?哪些是违规求助? 3270312
关于积分的说明 9965330
捐赠科研通 2985269
什么是DOI,文献DOI怎么找? 1637862
邀请新用户注册赠送积分活动 777738
科研通“疑难数据库(出版商)”最低求助积分说明 747179