拉深
材料科学
铌
各向异性
变形(气象学)
复合材料
单轴张力
本构方程
包辛格效应
产量(工程)
弯曲
硬化(计算)
应变率
可塑性
延展性(地球科学)
张力(地质)
压缩(物理)
冶金
热力学
极限抗拉强度
有限元法
光学
蠕动
物理
图层(电子)
作者
Minki Kim,Yannis P. Korkolis,Paul Carriere,Nanda Gopal Matavalam,James Penney,Sergey Kutsaev,Yannis P. Korkolis
标识
DOI:10.1016/j.ijsolstr.2022.111770
摘要
This work investigates the mechanical and forming behavior of pure niobium sheet, which has broad applications in low-temperature physics including the proposed International Linear Collider. An extensive suite of mechanical tests is performed on commercially-pure niobium (CP-Nb), including uniaxial tension, strain-rate-jump, biaxial tension and disc compression, which are used to characterize the plastic behavior of the CP-Nb sheet. The material is found to have significant plastic anisotropy, high R-values, significant ductility, and non-negligible rate-dependent behavior. Subsequently, two types of forming experiments, deep-drawing and stretch-forming, are conducted with CP-Nb blanks of different diameters. These two experiments subject the CP-Nb sheet to different modes of deformation and stress states, and are meant to highlight the strengths and deficiencies of constitutive models. To model the forming behavior of the CP-Nb sheet, the material hardening at large strains is extracted from the uniaxial tension test, including the strain-rate effect. The plastic anisotropy of the CP-Nb sheet is modeled with the Yld2000-2D and Yld2004-3D non-quadratic yield functions. The friction coefficient of 0.25 is inversely identified from the deep-drawing experiments, by matching the predicted and measured punch force–displacement responses. While the features of the deep-drawing experiment are captured well using the constitutive framework described above, those of the stretch-forming experiment are not. Agreement with the latter is accomplished only after a targeted recalibration of the anisotropic yield function. This underscores the general conclusion that successful modeling of plastic deformation processes requires an accurately calibrated yield function which captures the dominant, process-specific stress states.
科研通智能强力驱动
Strongly Powered by AbleSci AI