A tool for the ages: The Probabilistic Cosmogenic Age Analysis Tool (P-CAAT)

地形地貌 背景(考古学) 地质学 概率逻辑 航程(航空) 宇宙成因核素 离群值 偏斜 聚类分析 概率分布 计算机科学 统计 地貌学 人工智能 数学 古生物学 物理 宇宙射线 复合材料 材料科学 天体物理学
作者
Jason M. Dortch,Matt D. Tomkins,Sourav Saha,Madhav K. Murari,L. M. Schoenbohm,Doug Curl
出处
期刊:Quaternary Geochronology [Elsevier]
卷期号:71: 101323-101323 被引量:32
标识
DOI:10.1016/j.quageo.2022.101323
摘要

While revolutionary to the geomorphic community, the application of terrestrial cosmogenic nuclide (TCN) dating is complicated by geological uncertainties, which often lead to skewed or poorly clustered TCN age distributions. Although a range of statistical approaches are typically used to detect and remove outliers, few are optimized for analysis of TCN datasets. Many are mean- or median-based and therefore explicitly assume a single probability distribution (e.g., Mean Squared Weighted Deviates, Chauvenet's Criterion, etc.). Given the ubiquity of pre- and post-depositional modification of rock surfaces, which occur at different rates in different geomorphic settings, these approaches struggle with multimodal distributions which often characterize TCN datasets. In addition, most statistical approaches do not propagate measurement or production rate uncertainties, which become increasingly important as dataset size or clustering increases. Finally, most approaches provide arithmetic single solutions, irrespective of geologic context. To address these limitations, we present the Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), a new approach for outlier detection and landform age analysis. This tool incorporates both sample age and geologic uncertainties and uses Monte Carlo simulations to eliminate dataset skewness by isolating component normal distributions from a cumulative probability density estimate for datasets with three or more samples. This approach allows geologic context to inform post-analysis interpretations, as researchers can assign landform ages based upon statistically distinct subpopulations, informed by the characteristics of geomorphic systems (e.g., exhumation of boulders as moraines degrade through time). To evaluate the effectiveness of P-CAAT, we analyzed a range of synthetic TCN datasets and compared the results to commonly used statistical approaches for outlier detection. Irrespective of dataset size or clustering, P-CAAT outperformed other approaches and returned accurate solutions that improve in precision as sample size increases. To enable more comprehensive utilization of our approach, P-CAAT is packaged with a GUI interface and is available for download at kgs. uky.edu/anorthite/PCAAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助体贴的紫伊采纳,获得10
刚刚
甜蜜乐松完成签到,获得积分10
刚刚
Hello应助科视采纳,获得10
1秒前
充电宝应助快乐冷荷采纳,获得200
1秒前
xl完成签到,获得积分10
1秒前
深夜酒馆完成签到,获得积分10
1秒前
落忆完成签到 ,获得积分10
1秒前
2秒前
Owen应助木棉采纳,获得10
2秒前
1101592875发布了新的文献求助10
2秒前
3秒前
3秒前
木可完成签到,获得积分10
3秒前
ss完成签到,获得积分10
3秒前
郭菲完成签到 ,获得积分10
3秒前
3秒前
Helen发布了新的文献求助10
4秒前
善学以致用应助牛油果采纳,获得10
4秒前
角落的蘑菇完成签到,获得积分10
4秒前
4秒前
5秒前
36456657应助糖豆豆采纳,获得10
5秒前
曾经可乐完成签到 ,获得积分10
6秒前
6秒前
Xgg完成签到 ,获得积分20
6秒前
研友_pnx7JL完成签到,获得积分10
7秒前
yu发布了新的文献求助10
7秒前
smottom应助lingyin采纳,获得10
7秒前
白蓝完成签到 ,获得积分20
7秒前
8秒前
ss发布了新的文献求助10
8秒前
英俊溪灵发布了新的文献求助10
8秒前
追梦人完成签到,获得积分10
8秒前
8秒前
rey发布了新的文献求助10
9秒前
Orange应助帅气的皮卡采纳,获得10
9秒前
orixero应助优雅翎采纳,获得10
9秒前
9秒前
慕青应助DRHSK采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577