A tool for the ages: The Probabilistic Cosmogenic Age Analysis Tool (P-CAAT)

地形地貌 背景(考古学) 地质学 概率逻辑 航程(航空) 宇宙成因核素 离群值 偏斜 聚类分析 概率分布 计算机科学 统计 地貌学 人工智能 数学 古生物学 物理 宇宙射线 复合材料 材料科学 天体物理学
作者
Jason M. Dortch,Matt D. Tomkins,Sourav Saha,Madhav K. Murari,L. M. Schoenbohm,Doug Curl
出处
期刊:Quaternary Geochronology [Elsevier]
卷期号:71: 101323-101323 被引量:32
标识
DOI:10.1016/j.quageo.2022.101323
摘要

While revolutionary to the geomorphic community, the application of terrestrial cosmogenic nuclide (TCN) dating is complicated by geological uncertainties, which often lead to skewed or poorly clustered TCN age distributions. Although a range of statistical approaches are typically used to detect and remove outliers, few are optimized for analysis of TCN datasets. Many are mean- or median-based and therefore explicitly assume a single probability distribution (e.g., Mean Squared Weighted Deviates, Chauvenet's Criterion, etc.). Given the ubiquity of pre- and post-depositional modification of rock surfaces, which occur at different rates in different geomorphic settings, these approaches struggle with multimodal distributions which often characterize TCN datasets. In addition, most statistical approaches do not propagate measurement or production rate uncertainties, which become increasingly important as dataset size or clustering increases. Finally, most approaches provide arithmetic single solutions, irrespective of geologic context. To address these limitations, we present the Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), a new approach for outlier detection and landform age analysis. This tool incorporates both sample age and geologic uncertainties and uses Monte Carlo simulations to eliminate dataset skewness by isolating component normal distributions from a cumulative probability density estimate for datasets with three or more samples. This approach allows geologic context to inform post-analysis interpretations, as researchers can assign landform ages based upon statistically distinct subpopulations, informed by the characteristics of geomorphic systems (e.g., exhumation of boulders as moraines degrade through time). To evaluate the effectiveness of P-CAAT, we analyzed a range of synthetic TCN datasets and compared the results to commonly used statistical approaches for outlier detection. Irrespective of dataset size or clustering, P-CAAT outperformed other approaches and returned accurate solutions that improve in precision as sample size increases. To enable more comprehensive utilization of our approach, P-CAAT is packaged with a GUI interface and is available for download at kgs. uky.edu/anorthite/PCAAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
踏实十三发布了新的文献求助10
1秒前
Akim应助mz采纳,获得10
1秒前
董先生发布了新的文献求助10
1秒前
蚊香液发布了新的文献求助10
1秒前
鲸鱼发布了新的文献求助10
1秒前
1秒前
是希希啊a发布了新的文献求助10
2秒前
FashionBoy应助栗子采纳,获得10
2秒前
ky幻影完成签到,获得积分10
2秒前
dddd发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助里昂采纳,获得30
2秒前
3秒前
枯草芽孢完成签到,获得积分10
3秒前
li完成签到,获得积分20
3秒前
赘婿应助Spike采纳,获得10
3秒前
饭饭大王完成签到,获得积分10
3秒前
SY发布了新的文献求助10
4秒前
4秒前
4秒前
诚心寄灵完成签到,获得积分10
5秒前
5秒前
Halari发布了新的文献求助10
5秒前
5秒前
zoe11完成签到,获得积分10
5秒前
5秒前
FlipFlops发布了新的文献求助10
6秒前
我的miemie发布了新的文献求助10
7秒前
小木完成签到 ,获得积分10
7秒前
逢投必中完成签到 ,获得积分10
7秒前
李爱国应助俭朴的雨安采纳,获得10
7秒前
quan完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
lj完成签到,获得积分10
9秒前
qdr关闭了qdr文献求助
9秒前
Hua发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482