A tool for the ages: The Probabilistic Cosmogenic Age Analysis Tool (P-CAAT)

地形地貌 背景(考古学) 地质学 概率逻辑 航程(航空) 宇宙成因核素 离群值 偏斜 聚类分析 概率分布 计算机科学 统计 地貌学 人工智能 数学 古生物学 物理 宇宙射线 复合材料 材料科学 天体物理学
作者
Jason M. Dortch,Matt D. Tomkins,Sourav Saha,Madhav K. Murari,L. M. Schoenbohm,Doug Curl
出处
期刊:Quaternary Geochronology [Elsevier]
卷期号:71: 101323-101323 被引量:32
标识
DOI:10.1016/j.quageo.2022.101323
摘要

While revolutionary to the geomorphic community, the application of terrestrial cosmogenic nuclide (TCN) dating is complicated by geological uncertainties, which often lead to skewed or poorly clustered TCN age distributions. Although a range of statistical approaches are typically used to detect and remove outliers, few are optimized for analysis of TCN datasets. Many are mean- or median-based and therefore explicitly assume a single probability distribution (e.g., Mean Squared Weighted Deviates, Chauvenet's Criterion, etc.). Given the ubiquity of pre- and post-depositional modification of rock surfaces, which occur at different rates in different geomorphic settings, these approaches struggle with multimodal distributions which often characterize TCN datasets. In addition, most statistical approaches do not propagate measurement or production rate uncertainties, which become increasingly important as dataset size or clustering increases. Finally, most approaches provide arithmetic single solutions, irrespective of geologic context. To address these limitations, we present the Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), a new approach for outlier detection and landform age analysis. This tool incorporates both sample age and geologic uncertainties and uses Monte Carlo simulations to eliminate dataset skewness by isolating component normal distributions from a cumulative probability density estimate for datasets with three or more samples. This approach allows geologic context to inform post-analysis interpretations, as researchers can assign landform ages based upon statistically distinct subpopulations, informed by the characteristics of geomorphic systems (e.g., exhumation of boulders as moraines degrade through time). To evaluate the effectiveness of P-CAAT, we analyzed a range of synthetic TCN datasets and compared the results to commonly used statistical approaches for outlier detection. Irrespective of dataset size or clustering, P-CAAT outperformed other approaches and returned accurate solutions that improve in precision as sample size increases. To enable more comprehensive utilization of our approach, P-CAAT is packaged with a GUI interface and is available for download at kgs. uky.edu/anorthite/PCAAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮的大炮完成签到 ,获得积分10
1秒前
魏欣雨完成签到,获得积分10
1秒前
jzt12138发布了新的文献求助10
2秒前
一一应助第二支羽毛采纳,获得10
3秒前
老实小虾米完成签到,获得积分10
4秒前
栗悟饭完成签到,获得积分10
5秒前
星落枝头完成签到,获得积分20
5秒前
Lucas应助永和采纳,获得10
5秒前
潇潇发布了新的文献求助10
6秒前
6秒前
Jasper应助MingQue采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
大个应助000采纳,获得10
7秒前
星落枝头发布了新的文献求助10
8秒前
呜啦啦完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
可爱的函函应助pyt采纳,获得30
9秒前
JJW发布了新的文献求助10
10秒前
Jasper应助jzt12138采纳,获得10
12秒前
evans完成签到,获得积分10
12秒前
皮蛋发布了新的文献求助10
13秒前
13秒前
13秒前
16秒前
NOVEICE完成签到,获得积分20
16秒前
啤酒半斤完成签到,获得积分10
16秒前
研友_GZbV4Z完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
斯文败类应助铁光采纳,获得10
18秒前
18秒前
ygtrece完成签到,获得积分10
19秒前
19秒前
小二郎应助韩豆乐采纳,获得10
19秒前
周宋发布了新的文献求助200
19秒前
19秒前
20秒前
小冯完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667