A tool for the ages: The Probabilistic Cosmogenic Age Analysis Tool (P-CAAT)

地形地貌 背景(考古学) 地质学 概率逻辑 航程(航空) 宇宙成因核素 离群值 偏斜 聚类分析 概率分布 计算机科学 统计 地貌学 人工智能 数学 古生物学 材料科学 物理 宇宙射线 天体物理学 复合材料
作者
Jason M. Dortch,Matt D. Tomkins,Sourav Saha,Madhav K. Murari,L. M. Schoenbohm,Doug Curl
出处
期刊:Quaternary Geochronology [Elsevier]
卷期号:71: 101323-101323 被引量:32
标识
DOI:10.1016/j.quageo.2022.101323
摘要

While revolutionary to the geomorphic community, the application of terrestrial cosmogenic nuclide (TCN) dating is complicated by geological uncertainties, which often lead to skewed or poorly clustered TCN age distributions. Although a range of statistical approaches are typically used to detect and remove outliers, few are optimized for analysis of TCN datasets. Many are mean- or median-based and therefore explicitly assume a single probability distribution (e.g., Mean Squared Weighted Deviates, Chauvenet's Criterion, etc.). Given the ubiquity of pre- and post-depositional modification of rock surfaces, which occur at different rates in different geomorphic settings, these approaches struggle with multimodal distributions which often characterize TCN datasets. In addition, most statistical approaches do not propagate measurement or production rate uncertainties, which become increasingly important as dataset size or clustering increases. Finally, most approaches provide arithmetic single solutions, irrespective of geologic context. To address these limitations, we present the Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), a new approach for outlier detection and landform age analysis. This tool incorporates both sample age and geologic uncertainties and uses Monte Carlo simulations to eliminate dataset skewness by isolating component normal distributions from a cumulative probability density estimate for datasets with three or more samples. This approach allows geologic context to inform post-analysis interpretations, as researchers can assign landform ages based upon statistically distinct subpopulations, informed by the characteristics of geomorphic systems (e.g., exhumation of boulders as moraines degrade through time). To evaluate the effectiveness of P-CAAT, we analyzed a range of synthetic TCN datasets and compared the results to commonly used statistical approaches for outlier detection. Irrespective of dataset size or clustering, P-CAAT outperformed other approaches and returned accurate solutions that improve in precision as sample size increases. To enable more comprehensive utilization of our approach, P-CAAT is packaged with a GUI interface and is available for download at kgs. uky.edu/anorthite/PCAAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SGOM发布了新的文献求助10
2秒前
黄大师完成签到,获得积分10
2秒前
小鱼发布了新的文献求助10
2秒前
贰陆发布了新的文献求助10
3秒前
KhalilHao发布了新的文献求助10
3秒前
秀丽钢笔发布了新的文献求助10
3秒前
luna发布了新的文献求助400
4秒前
英姑应助韭菜盒子采纳,获得10
4秒前
Tieaciaa完成签到,获得积分10
4秒前
zhang1完成签到,获得积分10
5秒前
shelter完成签到 ,获得积分10
5秒前
满眼月月发布了新的文献求助10
5秒前
aimee发布了新的文献求助10
5秒前
6秒前
ayu发布了新的文献求助10
6秒前
积极慕梅应助铲屎官采纳,获得10
6秒前
守护最好的坤坤完成签到,获得积分10
6秒前
8秒前
江峰发布了新的文献求助10
9秒前
情怀应助贼肉采纳,获得10
9秒前
小丘2024发布了新的文献求助30
10秒前
10秒前
zhang1发布了新的文献求助10
11秒前
jdz完成签到 ,获得积分10
11秒前
上官若男应助大力金针菇采纳,获得10
12秒前
12秒前
12秒前
不安青牛应助Brill采纳,获得10
13秒前
13秒前
13秒前
Tieaciaa发布了新的文献求助10
13秒前
14秒前
14秒前
Re_move完成签到,获得积分10
15秒前
15秒前
bkagyin应助笨笨垣采纳,获得10
16秒前
16秒前
Luke发布了新的文献求助30
16秒前
ding应助binghuu采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721