强化学习
遗传算法
计算机科学
人口
染色体
空战
趋同(经济学)
钢筋
数学优化
人工智能
模拟
工程类
机器学习
数学
生物
生物化学
人口学
结构工程
社会学
经济
基因
经济增长
作者
Hua Gong,Dalong Liu,Yong Zhang,Ke Xu
标识
DOI:10.1109/cac53003.2021.9728512
摘要
Decision optimization in surface-to-air defense and coordinated weapon target assignment can improve the defense effect and the utilization rate of weapons. Considering the constraints of weapon capability, a multi-target optimization model is established to maximize the damage probability and minimize the weapon consumption cost. A dual population genetic algorithm improved by reinforcement learning is designed to solve this model. The chromosome exchange ratio is controlled by reinforcement learning to ensure population diversity. Experimental results verify the convergence speed and accuracy of the improved reinforcement genetic algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI