纳米流体学
纳米技术
材料科学
离子键合
碳纤维
石墨
纳米材料
渗透力
活性炭
化学物理
离子
吸附
化学
膜
正渗透
复合材料
有机化学
复合数
生物化学
反渗透
作者
Theo Emmerich,K. S. Vasu,Antoine Niguès,Ashok Keerthi,Boya Radha,Alessandro Siria,Lydéric Bocquet
出处
期刊:Nature Materials
[Springer Nature]
日期:2022-04-14
卷期号:21 (6): 696-702
被引量:57
标识
DOI:10.1038/s41563-022-01229-x
摘要
Carbon has emerged as a unique material in nanofluidics, with reports of fast water transport, molecular ion separation and efficient osmotic energy conversion. Many of these phenomena still await proper rationalization due to the lack of fundamental understanding of nanoscale ionic transport, which can only be achieved in controlled environments. Here we develop the fabrication of 'activated' two-dimensional carbon nanochannels. Compared with nanoconduits with 'pristine' graphite walls, this enables the investigation of nanoscale ionic transport in great detail. We show that activated carbon nanochannels outperform pristine channels by orders of magnitude in terms of surface electrification, ionic conductance, streaming current and (epi-)osmotic currents. A detailed theoretical framework enables us to attribute the enhanced ionic transport across activated carbon nanochannels to an optimal combination of high surface charge and low friction. Furthermore, this demonstrates the unique potential of activated carbon for energy harvesting from salinity gradients with single-pore power density across activated carbon nanochannels, reaching hundreds of kilowatts per square metre, surpassing alternative nanomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI