Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity

计算机科学 对抗制 一般化 约束(计算机辅助设计) 集合(抽象数据类型) 相似性(几何) 可视化 人工智能 语义学(计算机科学) 机器学习 特征(语言学) 脆弱性(计算) 极限(数学) 模式识别(心理学) 图像(数学) 数学 数学分析 语言学 哲学 几何学 程序设计语言 计算机安全
作者
Cheng Luo,Qinliang Lin,Weicheng Xie,Bizhu Wu,Jinheng Xie,Linlin Shen
标识
DOI:10.1109/cvpr52688.2022.01488
摘要

Current adversarial attack research reveals the vulnerability of learning-based classifiers against carefully crafted perturbations. However, most existing attack methods have inherent limitations in cross-dataset generalization as they rely on a classification layer with a closed set of categories. Furthermore, the perturbations generated by these methods may appear in regions easily perceptible to the human visual system (HVS). To circumvent the former problem, we propose a novel algorithm that attacks semantic similarity on feature representations. In this way, we are able to fool classifiers without limiting attacks to a specific dataset. For imperceptibility, we introduce the low-frequency constraint to limit perturbations within high-frequency components, ensuring perceptual similarity between adversarial examples and originals. Extensive experiments on three datasets (CIFAR-10, CIFAR-100, and ImageNet-1K) and three public online platforms indicate that our attack can yield misleading and transferable adversarial examples across architectures and datasets. Additionally, visualization results and quantitative performance (in terms of four different metrics) show that the proposed algorithm generates more imperceptible perturbations than the state-of-the-art methods. Code is made available at https://github.com/LinQinLiang/SSAH-adversarial-attack.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助hancahngxiao采纳,获得10
刚刚
bwl发布了新的文献求助10
刚刚
1秒前
风清扬发布了新的文献求助10
2秒前
李爱国应助bwl采纳,获得10
4秒前
Ava应助mmRadio采纳,获得10
5秒前
6秒前
脑洞疼应助老王采纳,获得10
7秒前
可与发布了新的文献求助10
7秒前
8秒前
Tizzy完成签到,获得积分10
11秒前
11秒前
Da完成签到,获得积分10
11秒前
在水一方应助尘封雪采纳,获得10
11秒前
11秒前
hancahngxiao发布了新的文献求助10
12秒前
12秒前
烟花应助wjw采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得100
13秒前
loststarts应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
孙福禄应助科研通管家采纳,获得10
13秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
所所应助可与采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
5430应助科研通管家采纳,获得20
14秒前
烟花应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
谢许杯商应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014