Machine learning and theoretical analysis release the non-linear relationship among ozone, secondary organic aerosol and volatile organic compounds

异戊二烯 臭氧 环境化学 气溶胶 空气质量指数 微粒 化学 挥发性有机化合物 环境科学 乙烯 气象学 有机化学 催化作用 共聚物 物理 聚合物
作者
Feng Wang,Zhongcheng Zhang,Gen Wang,Zhenyu Wang,Mei Li,Weiqing Liang,Jie Gao,Wei Wang,Da Chen,Yinchang Feng,Guoliang Shi
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:114: 75-84 被引量:18
标识
DOI:10.1016/j.jes.2021.07.026
摘要

Fine particulate matter (PM2.5) and ozone (O3) pollutions are prevalent air quality issues in China. Volatile organic compounds (VOCs) have significant impact on the formation of O3 and secondary organic aerosols (SOA) contributing PM2.5. Herein, we investigated 54 VOCs, O3 and SOA in Tianjin from June 2017 to May 2019 to explore the non-linear relationship among O3, SOA and VOCs. The monthly patterns of VOCs and SOA concentrations were characterized by peak values during October to March and reached a minimum from April to September, but the observed O3 was exactly the opposite. Machine learning methods resolved the importance of individual VOCs on O3 and SOA that alkenes (mainly ethylene, propylene, and isoprene) have the highest importance to O3 formation; alkanes (Cn, n ≥ 6) and aromatics were the main source of SOA formation. Machine learning methods revealed and emphasized the importance of photochemical consumptions of VOCs to O3 and SOA formation. Ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) calculated by consumed VOCs quantitatively indicated that more than 80% of the consumed VOCs were alkenes which dominated the O3 formation, and the importance of consumed aromatics and alkenes to SOAFP were 40.84% and 56.65%, respectively. Therein, isoprene contributed the most to OFP at 41.45% regardless of the season, while aromatics (58.27%) contributed the most to SOAFP in winter. Collectively, our findings can provide scientific evidence on policymaking for VOCs controls on seasonal scales to achieve effective reduction in both SOA and O3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wzm发布了新的文献求助10
2秒前
不想熬夜的夜猫子完成签到,获得积分10
5秒前
澄碧千顷完成签到 ,获得积分10
7秒前
安静采萱完成签到,获得积分10
8秒前
8秒前
1點點cui发布了新的文献求助10
11秒前
团装完成签到 ,获得积分10
13秒前
ziyueqin完成签到,获得积分10
17秒前
Ava应助研友_LOoomL采纳,获得10
17秒前
17秒前
搜集达人应助1點點cui采纳,获得10
19秒前
ziyueqin发布了新的文献求助50
20秒前
20秒前
科研通AI2S应助wzm采纳,获得10
21秒前
22秒前
朴实香露完成签到,获得积分20
22秒前
小胡要读博完成签到,获得积分10
22秒前
24秒前
爱听歌契发布了新的文献求助10
25秒前
wzm完成签到,获得积分10
28秒前
29秒前
29秒前
yzy完成签到,获得积分10
29秒前
Mr_Qiu发布了新的文献求助10
31秒前
科研通AI2S应助完美的海秋采纳,获得10
31秒前
34秒前
3123939715发布了新的文献求助10
34秒前
今天要学习完成签到 ,获得积分10
34秒前
希望天下0贩的0应助Lion采纳,获得10
35秒前
喵总完成签到,获得积分10
36秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
大个应助科研通管家采纳,获得10
38秒前
彭于晏应助科研通管家采纳,获得10
38秒前
Bazinga应助科研通管家采纳,获得10
38秒前
华仔应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
39秒前
汉堡包应助zhengmin采纳,获得10
40秒前
511发布了新的文献求助10
43秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238476
求助须知:如何正确求助?哪些是违规求助? 2883867
关于积分的说明 8231897
捐赠科研通 2551825
什么是DOI,文献DOI怎么找? 1380294
科研通“疑难数据库(出版商)”最低求助积分说明 649001
邀请新用户注册赠送积分活动 624631