Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering

半导体 材料科学 纳米晶 载流子 光电子学 量子点 纳米技术 带隙 多激子产生
作者
Andrew M. Smith,Shuming Nie
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:43 (2): 190-200 被引量:1675
标识
DOI:10.1021/ar9001069
摘要

Semiconductor nanocrystals are tiny light-emitting particles on the nanometer scale. Researchers have studied these particles intensely and have developed them for broad applications in solar energy conversion, optoelectronic devices, molecular and cellular imaging, and ultrasensitive detection. A major feature of semiconductor nanocrystals is the quantum confinement effect, which leads to spatial enclosure of the electronic charge carriers within the nanocrystal. Because of this effect, researchers can use the size and shape of these “artificial atoms” to widely and precisely tune the energy of discrete electronic energy states and optical transitions. As a result, researchers can tune the light emission from these particles throughout the ultraviolet, visible, near-infrared, and mid-infrared spectral ranges. These particles also span the transition between small molecules and bulk crystals, instilling novel optical properties such as carrier multiplication, single-particle blinking, and spectral diffusion. In addition, semiconductor nanocrystals provide a versatile building block for developing complex nanostructures such as superlattices and multimodal agents for molecular imaging and targeted therapy. In this Account, we discuss recent advances in the understanding of the atomic structure and optical properties of semiconductor nanocrystals. We also discuss new strategies for band gap and electronic wave function engineering to control the location of charge carriers. New methodologies such as alloying, doping, strain-tuning, and band-edge warping will likely play key roles in the further development of these particles for optoelectronic and biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人物让人发布了新的文献求助10
刚刚
撒旦发布了新的文献求助10
1秒前
黄奥龙完成签到,获得积分10
1秒前
静心安逸发布了新的文献求助10
1秒前
断章发布了新的文献求助10
1秒前
所所应助桃博采纳,获得10
2秒前
眼睛大的傲菡完成签到,获得积分10
3秒前
地震学牛马完成签到,获得积分10
4秒前
文静千凡完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助自由的抽屉采纳,获得20
5秒前
彩色的严青完成签到,获得积分10
5秒前
彭于晏应助撒旦采纳,获得10
5秒前
斯文败类应助zhx123456采纳,获得10
6秒前
留胡子的石头完成签到 ,获得积分10
7秒前
沈言应助hyhyhyhy采纳,获得10
8秒前
bubble发布了新的文献求助10
8秒前
李健的粉丝团团长应助zc采纳,获得10
9秒前
9秒前
黄超超完成签到,获得积分10
9秒前
粗犷的凝芙完成签到 ,获得积分10
10秒前
10秒前
毛豆应助安静采纳,获得10
10秒前
xiaostou完成签到,获得积分10
11秒前
12秒前
墨尘完成签到,获得积分10
12秒前
超帅傲白发布了新的文献求助10
13秒前
13秒前
星辰大海应助李思采纳,获得10
14秒前
民国三年的雨应助hyhyhyhy采纳,获得10
16秒前
王佳完成签到,获得积分10
17秒前
墨尘发布了新的文献求助30
17秒前
18秒前
傲娇的睫毛膏完成签到,获得积分10
18秒前
Dor.Ma发布了新的文献求助10
18秒前
19秒前
ann完成签到,获得积分10
20秒前
21秒前
21秒前
李健应助琪琪扬扬采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310273
求助须知:如何正确求助?哪些是违规求助? 2943254
关于积分的说明 8513427
捐赠科研通 2618482
什么是DOI,文献DOI怎么找? 1431111
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649557