Fast and Robust Object Detection Using Asymmetric Totally Corrective Boosting

Boosting(机器学习) 阿达布思 人工智能 目标检测 计算机科学 分类器(UML) 机器学习 Viola–Jones对象检测框架 级联 模式识别(心理学) 人脸检测 面部识别系统 工程类 化学工程
作者
Peng Wang,Chunhua Shen,Nick Barnes,Hong Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 33-46 被引量:43
标识
DOI:10.1109/tnnls.2011.2178324
摘要

Boosting-based object detection has received significant attention recently. In this paper, we propose totally corrective asymmetric boosting algorithms for real-time object detection. Our algorithms differ from Viola and Jones' detection framework in two ways. Firstly, our boosting algorithms explicitly optimize asymmetric loss of objectives, while AdaBoost used by Viola and Jones optimizes a symmetric loss. Secondly, by carefully deriving the Lagrange duals of the optimization problems, we design more efficient boosting in that the coefficients of the selected weak classifiers are updated in a totally corrective fashion, in contrast to the stagewise optimization commonly used by most boosting algorithms. Column generation is employed to solve the proposed optimization problems. Unlike conventional boosting, the proposed boosting algorithms are able to de-select those irrelevant weak classifiers in the ensemble while training a classification cascade. This results in improved detection performance as well as fewer weak classifiers in the learned strong classifier. Compared with AsymBoost of Viola and Jones, our proposed asymmetric boosting is nonheuristic and the training procedure is much simpler. Experiments on face and pedestrian detection demonstrate that our methods have superior detection performance than some of the state-of-the-art object detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xff发布了新的文献求助10
刚刚
刚刚
现代的访曼给lihua的求助进行了留言
3秒前
知白完成签到 ,获得积分10
4秒前
PP发布了新的文献求助10
5秒前
柒_l发布了新的文献求助10
6秒前
6秒前
英姑应助qsw采纳,获得10
6秒前
shen完成签到,获得积分10
7秒前
失眠水风完成签到,获得积分10
8秒前
标致缘郡发布了新的文献求助10
8秒前
星期天发布了新的文献求助10
10秒前
情怀应助悦耳的芝麻采纳,获得10
10秒前
Ava应助lilili采纳,获得10
11秒前
小何完成签到 ,获得积分10
12秒前
12秒前
失眠水风发布了新的文献求助10
13秒前
Chief完成签到,获得积分0
15秒前
16秒前
16秒前
悦耳的芝麻完成签到,获得积分20
16秒前
17秒前
chenxin完成签到,获得积分10
17秒前
能干冬瓜发布了新的文献求助10
19秒前
gaolengtu完成签到 ,获得积分10
19秒前
小二郎应助SWL采纳,获得10
19秒前
慕青应助小蒋不延毕采纳,获得10
20秒前
标致绮露发布了新的文献求助10
21秒前
21秒前
闪电完成签到,获得积分10
22秒前
CipherSage应助欣慰的书本采纳,获得10
22秒前
欢呼雁完成签到,获得积分10
23秒前
23秒前
轩辕寄风应助雪白傲薇采纳,获得50
24秒前
24秒前
贾克斯发布了新的文献求助10
27秒前
27秒前
28秒前
29秒前
Rita发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963