Fast and Robust Object Detection Using Asymmetric Totally Corrective Boosting

Boosting(机器学习) 阿达布思 人工智能 目标检测 计算机科学 分类器(UML) 机器学习 Viola–Jones对象检测框架 级联 模式识别(心理学) 人脸检测 面部识别系统 工程类 化学工程
作者
Peng Wang,Chunhua Shen,Nick Barnes,Hong Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 33-46 被引量:43
标识
DOI:10.1109/tnnls.2011.2178324
摘要

Boosting-based object detection has received significant attention recently. In this paper, we propose totally corrective asymmetric boosting algorithms for real-time object detection. Our algorithms differ from Viola and Jones' detection framework in two ways. Firstly, our boosting algorithms explicitly optimize asymmetric loss of objectives, while AdaBoost used by Viola and Jones optimizes a symmetric loss. Secondly, by carefully deriving the Lagrange duals of the optimization problems, we design more efficient boosting in that the coefficients of the selected weak classifiers are updated in a totally corrective fashion, in contrast to the stagewise optimization commonly used by most boosting algorithms. Column generation is employed to solve the proposed optimization problems. Unlike conventional boosting, the proposed boosting algorithms are able to de-select those irrelevant weak classifiers in the ensemble while training a classification cascade. This results in improved detection performance as well as fewer weak classifiers in the learned strong classifier. Compared with AsymBoost of Viola and Jones, our proposed asymmetric boosting is nonheuristic and the training procedure is much simpler. Experiments on face and pedestrian detection demonstrate that our methods have superior detection performance than some of the state-of-the-art object detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助binbinbin采纳,获得10
1秒前
雪白的代芹完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
yyyhhh完成签到,获得积分10
2秒前
鱼囧发布了新的文献求助10
2秒前
3秒前
上官若男应助寒月如雪采纳,获得10
4秒前
4秒前
jake完成签到,获得积分10
4秒前
科研通AI6应助Shen采纳,获得10
4秒前
典雅诗筠发布了新的文献求助10
4秒前
觅兴完成签到,获得积分0
5秒前
是龙龙呀完成签到,获得积分10
5秒前
万能图书馆应助niceday123采纳,获得10
5秒前
yyyhhh发布了新的文献求助30
5秒前
5秒前
zengxiaoyi发布了新的文献求助30
6秒前
6秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得20
8秒前
livinglast发布了新的文献求助20
8秒前
刻苦的竺应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
ddd发布了新的文献求助10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
脑洞疼应助zzh采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371