亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast and Robust Object Detection Using Asymmetric Totally Corrective Boosting

Boosting(机器学习) 阿达布思 人工智能 目标检测 计算机科学 分类器(UML) 机器学习 Viola–Jones对象检测框架 级联 模式识别(心理学) 人脸检测 面部识别系统 工程类 化学工程
作者
Peng Wang,Chunhua Shen,Nick Barnes,Hong Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 33-46 被引量:43
标识
DOI:10.1109/tnnls.2011.2178324
摘要

Boosting-based object detection has received significant attention recently. In this paper, we propose totally corrective asymmetric boosting algorithms for real-time object detection. Our algorithms differ from Viola and Jones' detection framework in two ways. Firstly, our boosting algorithms explicitly optimize asymmetric loss of objectives, while AdaBoost used by Viola and Jones optimizes a symmetric loss. Secondly, by carefully deriving the Lagrange duals of the optimization problems, we design more efficient boosting in that the coefficients of the selected weak classifiers are updated in a totally corrective fashion, in contrast to the stagewise optimization commonly used by most boosting algorithms. Column generation is employed to solve the proposed optimization problems. Unlike conventional boosting, the proposed boosting algorithms are able to de-select those irrelevant weak classifiers in the ensemble while training a classification cascade. This results in improved detection performance as well as fewer weak classifiers in the learned strong classifier. Compared with AsymBoost of Viola and Jones, our proposed asymmetric boosting is nonheuristic and the training procedure is much simpler. Experiments on face and pedestrian detection demonstrate that our methods have superior detection performance than some of the state-of-the-art object detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
wrl2023发布了新的文献求助10
28秒前
JamesPei应助科研通管家采纳,获得10
31秒前
31秒前
wrl2023完成签到,获得积分10
36秒前
老广发布了新的文献求助10
42秒前
48秒前
1分钟前
charih完成签到 ,获得积分10
1分钟前
xiaolang2004完成签到,获得积分10
2分钟前
2分钟前
2分钟前
LJL完成签到 ,获得积分10
2分钟前
2分钟前
luyao发布了新的文献求助10
3分钟前
YZChen完成签到,获得积分10
3分钟前
千早爱音完成签到,获得积分10
3分钟前
领导范儿应助可爱丹彤采纳,获得10
3分钟前
3分钟前
可爱丹彤发布了新的文献求助10
3分钟前
jin发布了新的文献求助10
3分钟前
3分钟前
4分钟前
boluohu发布了新的文献求助10
4分钟前
jin完成签到,获得积分10
4分钟前
情怀应助jin采纳,获得10
4分钟前
boluohu完成签到,获得积分10
4分钟前
冬日暖阳完成签到 ,获得积分10
4分钟前
威武灵阳完成签到,获得积分10
4分钟前
千早爱音应助科研通管家采纳,获得20
4分钟前
4分钟前
luyao完成签到,获得积分10
4分钟前
Gabriel发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
MchemG应助Gabriel采纳,获得10
5分钟前
5分钟前
bobo完成签到,获得积分10
5分钟前
情怀应助sun采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848652
捐赠科研通 4335991
什么是DOI,文献DOI怎么找? 2380709
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998