Fast and Robust Object Detection Using Asymmetric Totally Corrective Boosting

Boosting(机器学习) 阿达布思 人工智能 目标检测 计算机科学 分类器(UML) 机器学习 Viola–Jones对象检测框架 级联 模式识别(心理学) 人脸检测 面部识别系统 工程类 化学工程
作者
Peng Wang,Chunhua Shen,Nick Barnes,Hong Zheng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 33-46 被引量:43
标识
DOI:10.1109/tnnls.2011.2178324
摘要

Boosting-based object detection has received significant attention recently. In this paper, we propose totally corrective asymmetric boosting algorithms for real-time object detection. Our algorithms differ from Viola and Jones' detection framework in two ways. Firstly, our boosting algorithms explicitly optimize asymmetric loss of objectives, while AdaBoost used by Viola and Jones optimizes a symmetric loss. Secondly, by carefully deriving the Lagrange duals of the optimization problems, we design more efficient boosting in that the coefficients of the selected weak classifiers are updated in a totally corrective fashion, in contrast to the stagewise optimization commonly used by most boosting algorithms. Column generation is employed to solve the proposed optimization problems. Unlike conventional boosting, the proposed boosting algorithms are able to de-select those irrelevant weak classifiers in the ensemble while training a classification cascade. This results in improved detection performance as well as fewer weak classifiers in the learned strong classifier. Compared with AsymBoost of Viola and Jones, our proposed asymmetric boosting is nonheuristic and the training procedure is much simpler. Experiments on face and pedestrian detection demonstrate that our methods have superior detection performance than some of the state-of-the-art object detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸岩发布了新的文献求助10
1秒前
浩然发布了新的文献求助10
2秒前
2秒前
栗子应助owoow采纳,获得10
4秒前
科研通AI2S应助owoow采纳,获得10
4秒前
4秒前
5秒前
栗子应助与落采纳,获得10
5秒前
ira发布了新的文献求助10
7秒前
平常的伊关注了科研通微信公众号
7秒前
7秒前
所所应助123123采纳,获得10
8秒前
SciGPT应助林夕采纳,获得10
8秒前
9秒前
9秒前
dffwlj完成签到,获得积分10
9秒前
9秒前
Nancy2023完成签到,获得积分10
9秒前
10秒前
13秒前
13秒前
诸岩完成签到,获得积分10
13秒前
迅速怜寒发布了新的文献求助30
17秒前
路奇k发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
19秒前
lalala应助科研通管家采纳,获得20
19秒前
ding应助科研通管家采纳,获得10
19秒前
英姑应助bierbia采纳,获得10
20秒前
24秒前
小蘑菇应助小汤圆采纳,获得10
26秒前
27秒前
28秒前
平常的伊发布了新的文献求助10
31秒前
31秒前
pangboo发布了新的文献求助10
35秒前
阿德利企鹅完成签到 ,获得积分10
36秒前
科研鲁宾孙完成签到,获得积分20
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954