Multi-scale ship target detection using SAR images based on improved Yolov5

计算机科学 合成孔径雷达 水准点(测量) 自动识别系统 鉴定(生物学) 人工智能 遥感 模式识别(心理学) 数据挖掘 地质学 地理 地图学 植物 生物
作者
Muhammad Yasir,Liu Shanwei,Xu Mingming,Sheng Hui,Sakaouth Hossain,Arife Tugsan Isiacik Colak,Dawei Wang,Wan Jianhua,Kinh Luan Thanh Dang
出处
期刊:Frontiers in Marine Science [Frontiers Media SA]
卷期号:9 被引量:5
标识
DOI:10.3389/fmars.2022.1086140
摘要

Synthetic aperture radar (SAR) imaging is used to identify ships, which is a vital task in the maritime industry for managing maritime fisheries, marine transit, and rescue operations. However, some problems, like complex background interferences, various size ship feature variations, and indistinct tiny ship characteristics, continue to be challenges that tend to defy accuracy improvements in SAR ship detection. This research study for multiscale SAR ships detection has developed an upgraded YOLOv5s technique to address these issues. Using the C3 and FPN + PAN structures and attention mechanism, the generic YOLOv5 model has been enhanced in the backbone and neck section to achieve high identification rates. The SAR ship detection datasets and AirSARship datasets, along with two SAR large scene images acquired from the Chinese GF-3 satellite, are utilized to determine the experimental results. This model’s applicability is assessed using a variety of validation metrics, including accuracy, different training and test sets, and TF values, as well as comparisons with other cutting-edge classification models (ARPN, DAPN, Quad-FPN, HR-SDNet, Grid R-CNN, Cascade R-CNN, Multi-Stage YOLOv4-LITE, EfficientDet, Free-Anchor, Lite-Yolov5). The performance values demonstrate that the suggested model performed superior to the benchmark model used in this study, with higher identification rates. Additionally, these excellent identification rates demonstrate the recommended model’s applicability for maritime surveillance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
独特斩完成签到,获得积分10
3秒前
Diana发布了新的文献求助10
5秒前
6秒前
hxb发布了新的文献求助10
8秒前
鲁滨逊发布了新的文献求助10
11秒前
11秒前
13秒前
芽芽豆完成签到 ,获得积分10
17秒前
18秒前
俗人发布了新的文献求助10
18秒前
温柔的蛋挞完成签到,获得积分20
18秒前
zcj完成签到,获得积分10
23秒前
27秒前
hahhaha完成签到,获得积分10
28秒前
30秒前
31秒前
小李完成签到,获得积分10
32秒前
hahhaha发布了新的文献求助10
38秒前
任博文完成签到 ,获得积分10
39秒前
汉堡包应助123采纳,获得10
40秒前
bkagyin应助郝宝真采纳,获得10
41秒前
爆米花应助小猴子采纳,获得10
42秒前
sally完成签到 ,获得积分10
42秒前
舒服的八宝粥完成签到 ,获得积分10
44秒前
fmwang完成签到,获得积分10
44秒前
45秒前
SciGPT应助lsq108采纳,获得10
47秒前
49秒前
123发布了新的文献求助10
51秒前
53秒前
56秒前
细心寒凡发布了新的文献求助10
56秒前
有点小帅发布了新的文献求助10
57秒前
57秒前
羊咩咩哒完成签到,获得积分10
58秒前
xx发布了新的文献求助10
59秒前
SXYYY完成签到,获得积分10
59秒前
一二完成签到,获得积分10
59秒前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187