化学
红外线的
分子工程
纳米技术
光学
有机化学
材料科学
物理
作者
Rongrong Huang,Qinglong Qiao,Deborah Seah,Tianruo Shen,Xia Wu,Fabio De Moliner,Chao Wang,Nannan Ding,Weijie Chi,Huaming Sun,Marc Vendrell,Zhaochao Xu,Yu Fang,Xiaogang Liu
摘要
Organic fluorophores with near-infrared (NIR) emission and reduced molecular size are crucial for advancing bioimaging and biosensing technologies. Traditional methods, such as conjugation expansion and heteroatom engineering, often fail to reduce fluorophore size without sacrificing NIR emission properties. Addressing this challenge, our study utilized quantum chemical calculations and structure-property relationship analysis to establish an iterative design approach and enable precision engineering for compact, single-benzene-based NIR fluorophores. These newly developed fluorophores exhibit emissions up to 759 nm and maintain molecular weights as low as 192 g/mol, approximately 50% of that of Cy7. Additionally, they display unique environmental sensitivity─nonemissive in aqueous solutions but highly emissive in lipid environments. This property significantly enhances their utility in wash-free imaging of live cells. Our findings mark a substantial breakthrough in fluorophore engineering, paving the way for more efficient and adaptable imaging methodologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI