Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation

领域(数学) 阶段(地层学) 工程类 航空航天工程 人工智能 计算机科学 地质学 数学 古生物学 纯数学
作者
Yi Liu,Ranpeng Wang,Yin Gu,Congjian Li,Gangqiao Wang
出处
期刊:Energy [Elsevier BV]
卷期号:298: 131230-131230
标识
DOI:10.1016/j.energy.2024.131230
摘要

Accurate and reliable wind forecasts for urban blocks play a pivotal role in the construction of zero-energy communities by guiding the selection and placement of wind turbines and the aerodynamic design optimization of ducted openings. While relatively accurate wind fields are available based on numerical methods, their heavy computational cost and discontinuity make it necessary to explore an interactive and end-to-end method. In this study, we develop a physics-inspired and data-driven two-stage deep learning approach that can reconstruct complex wind fields precisely. The proposed method integrates a physical feature extraction model of the flow field with a sparse measurement data-driven error correction approach. In particular, a well-designed and well-trained flow field feature extraction model (original model) can preserve salient features of CFD modelling, while data-driven error correction techniques may harvest the uncertainty features and fill the remaining gaps between the original model predictions and the measured data. The proposed method is verified by a measured dataset from a community in Beijing. Experimental validation illustrates that the proposed algorithm successfully accomplishes wind field reconstruction in complex terrains using sparse datasets. We show that the proposed two-stage strategy exhibits significantly improved prediction results over the purely original method, with an average accuracy improvement of 47.17% and a maximum accuracy improvement of 72.59%. Overall, the proposed method delivers the potential in accurate wind field construction and urban wind energy forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
daisy发布了新的文献求助10
4秒前
极光完成签到,获得积分10
4秒前
4秒前
qifeng完成签到,获得积分10
6秒前
吾将上下而求索应助lJH采纳,获得10
6秒前
萧凌雪完成签到,获得积分10
8秒前
小鱼儿发布了新的文献求助10
8秒前
9秒前
9秒前
zzzyyyppp完成签到,获得积分10
9秒前
LL完成签到,获得积分10
11秒前
11秒前
15秒前
HN_litchi_King完成签到,获得积分10
17秒前
lJH完成签到,获得积分10
17秒前
用户5063899完成签到,获得积分10
18秒前
Eirrr发布了新的文献求助10
18秒前
21秒前
东山发布了新的文献求助10
22秒前
ll完成签到,获得积分10
22秒前
23秒前
无花果应助qst采纳,获得10
26秒前
syhjxk完成签到,获得积分10
26秒前
风中道罡发布了新的文献求助10
27秒前
Eirrr完成签到,获得积分10
28秒前
28秒前
惠归尘发布了新的文献求助10
30秒前
搜集达人应助东山采纳,获得10
31秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
无限的山水完成签到 ,获得积分10
31秒前
31秒前
32秒前
32秒前
江三村完成签到 ,获得积分10
33秒前
舌T发布了新的文献求助10
33秒前
ding应助缓慢冬天采纳,获得10
33秒前
爱吃锅巴肉片完成签到,获得积分10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150