Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation

领域(数学) 阶段(地层学) 工程类 航空航天工程 人工智能 计算机科学 地质学 数学 古生物学 纯数学
作者
Yi Liu,Ranpeng Wang,Yin Gu,Congjian Li,Gangqiao Wang
出处
期刊:Energy [Elsevier BV]
卷期号:298: 131230-131230
标识
DOI:10.1016/j.energy.2024.131230
摘要

Accurate and reliable wind forecasts for urban blocks play a pivotal role in the construction of zero-energy communities by guiding the selection and placement of wind turbines and the aerodynamic design optimization of ducted openings. While relatively accurate wind fields are available based on numerical methods, their heavy computational cost and discontinuity make it necessary to explore an interactive and end-to-end method. In this study, we develop a physics-inspired and data-driven two-stage deep learning approach that can reconstruct complex wind fields precisely. The proposed method integrates a physical feature extraction model of the flow field with a sparse measurement data-driven error correction approach. In particular, a well-designed and well-trained flow field feature extraction model (original model) can preserve salient features of CFD modelling, while data-driven error correction techniques may harvest the uncertainty features and fill the remaining gaps between the original model predictions and the measured data. The proposed method is verified by a measured dataset from a community in Beijing. Experimental validation illustrates that the proposed algorithm successfully accomplishes wind field reconstruction in complex terrains using sparse datasets. We show that the proposed two-stage strategy exhibits significantly improved prediction results over the purely original method, with an average accuracy improvement of 47.17% and a maximum accuracy improvement of 72.59%. Overall, the proposed method delivers the potential in accurate wind field construction and urban wind energy forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
大个应助wanwei采纳,获得10
刚刚
1秒前
2秒前
森森完成签到,获得积分10
2秒前
wb发布了新的文献求助10
2秒前
土豆淀粉发布了新的文献求助10
2秒前
3秒前
默问完成签到,获得积分10
4秒前
在水一方应助津海007采纳,获得10
4秒前
5秒前
瓜瓜发布了新的文献求助10
6秒前
小磊完成签到 ,获得积分10
6秒前
qingyu_Lin123发布了新的文献求助10
6秒前
7秒前
7秒前
squirrelcone发布了新的文献求助10
7秒前
梁钋瑞完成签到 ,获得积分10
7秒前
ye完成签到,获得积分10
8秒前
9秒前
水怪啊完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
12秒前
agrlook完成签到,获得积分10
12秒前
吕邓宏发布了新的文献求助10
13秒前
马龙完成签到,获得积分10
14秒前
林间发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
完美世界应助wb采纳,获得10
16秒前
taozhiqi完成签到,获得积分10
17秒前
博博儿发布了新的文献求助10
17秒前
sweet_eliza完成签到 ,获得积分10
17秒前
科里斯皮尔应助默问采纳,获得10
18秒前
整齐的惮完成签到 ,获得积分10
18秒前
852应助林间采纳,获得10
18秒前
津海007发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792