Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation

领域(数学) 阶段(地层学) 工程类 航空航天工程 人工智能 计算机科学 地质学 数学 古生物学 纯数学
作者
Yi Liu,Ranpeng Wang,Yin Gu,Congjian Li,Gangqiao Wang
出处
期刊:Energy [Elsevier]
卷期号:298: 131230-131230
标识
DOI:10.1016/j.energy.2024.131230
摘要

Accurate and reliable wind forecasts for urban blocks play a pivotal role in the construction of zero-energy communities by guiding the selection and placement of wind turbines and the aerodynamic design optimization of ducted openings. While relatively accurate wind fields are available based on numerical methods, their heavy computational cost and discontinuity make it necessary to explore an interactive and end-to-end method. In this study, we develop a physics-inspired and data-driven two-stage deep learning approach that can reconstruct complex wind fields precisely. The proposed method integrates a physical feature extraction model of the flow field with a sparse measurement data-driven error correction approach. In particular, a well-designed and well-trained flow field feature extraction model (original model) can preserve salient features of CFD modelling, while data-driven error correction techniques may harvest the uncertainty features and fill the remaining gaps between the original model predictions and the measured data. The proposed method is verified by a measured dataset from a community in Beijing. Experimental validation illustrates that the proposed algorithm successfully accomplishes wind field reconstruction in complex terrains using sparse datasets. We show that the proposed two-stage strategy exhibits significantly improved prediction results over the purely original method, with an average accuracy improvement of 47.17% and a maximum accuracy improvement of 72.59%. Overall, the proposed method delivers the potential in accurate wind field construction and urban wind energy forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
min完成签到,获得积分10
刚刚
xukaixuan001完成签到,获得积分10
1秒前
共享精神应助Henry采纳,获得10
1秒前
zoeyliu发布了新的文献求助10
1秒前
2秒前
一煽情发布了新的文献求助10
2秒前
saily完成签到,获得积分10
2秒前
2秒前
Sophia发布了新的文献求助10
2秒前
专注的问寒应助127采纳,获得20
3秒前
小刘很怕忙完成签到,获得积分10
3秒前
3秒前
4秒前
求助人员发布了新的文献求助10
4秒前
junzilan完成签到,获得积分10
4秒前
七月完成签到,获得积分10
4秒前
ffwwxye完成签到,获得积分10
4秒前
我不是阿良完成签到,获得积分10
4秒前
4秒前
上官若男应助豆豆采纳,获得10
5秒前
刻苦的秋玲完成签到,获得积分10
5秒前
5秒前
min发布了新的文献求助10
5秒前
Zoro完成签到,获得积分10
5秒前
令狐子轩完成签到,获得积分10
6秒前
6秒前
heli完成签到,获得积分10
6秒前
昏睡的咖啡完成签到,获得积分10
6秒前
6秒前
活泼的平灵完成签到,获得积分10
6秒前
mini完成签到,获得积分10
6秒前
曾曾完成签到,获得积分10
7秒前
7秒前
Zoro发布了新的文献求助10
8秒前
Gao发布了新的文献求助20
8秒前
杨杨杨发布了新的文献求助20
8秒前
8秒前
Owen应助和平星采纳,获得10
8秒前
林林完成签到,获得积分10
8秒前
艾文发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585284
求助须知:如何正确求助?哪些是违规求助? 4669106
关于积分的说明 14774781
捐赠科研通 4617521
什么是DOI,文献DOI怎么找? 2530479
邀请新用户注册赠送积分活动 1499197
关于科研通互助平台的介绍 1467660