Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation

领域(数学) 阶段(地层学) 工程类 航空航天工程 人工智能 计算机科学 地质学 数学 古生物学 纯数学
作者
Yi Liu,Ranpeng Wang,Yin Gu,Congjian Li,Gangqiao Wang
出处
期刊:Energy [Elsevier]
卷期号:298: 131230-131230
标识
DOI:10.1016/j.energy.2024.131230
摘要

Accurate and reliable wind forecasts for urban blocks play a pivotal role in the construction of zero-energy communities by guiding the selection and placement of wind turbines and the aerodynamic design optimization of ducted openings. While relatively accurate wind fields are available based on numerical methods, their heavy computational cost and discontinuity make it necessary to explore an interactive and end-to-end method. In this study, we develop a physics-inspired and data-driven two-stage deep learning approach that can reconstruct complex wind fields precisely. The proposed method integrates a physical feature extraction model of the flow field with a sparse measurement data-driven error correction approach. In particular, a well-designed and well-trained flow field feature extraction model (original model) can preserve salient features of CFD modelling, while data-driven error correction techniques may harvest the uncertainty features and fill the remaining gaps between the original model predictions and the measured data. The proposed method is verified by a measured dataset from a community in Beijing. Experimental validation illustrates that the proposed algorithm successfully accomplishes wind field reconstruction in complex terrains using sparse datasets. We show that the proposed two-stage strategy exhibits significantly improved prediction results over the purely original method, with an average accuracy improvement of 47.17% and a maximum accuracy improvement of 72.59%. Overall, the proposed method delivers the potential in accurate wind field construction and urban wind energy forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
刚刚
vv发布了新的文献求助10
1秒前
1秒前
2秒前
慢慢的地理人完成签到,获得积分10
2秒前
2秒前
完美世界应助小王采纳,获得10
3秒前
yang完成签到,获得积分10
3秒前
4秒前
bacteria发布了新的文献求助10
4秒前
田様应助脆皮小小酥采纳,获得10
4秒前
4秒前
阿呆不呆ning完成签到 ,获得积分10
4秒前
baige666发布了新的文献求助10
5秒前
沉默的倔驴应助VISIN采纳,获得10
6秒前
6秒前
zhilingou完成签到 ,获得积分10
6秒前
GG完成签到,获得积分10
7秒前
zozo完成签到,获得积分10
7秒前
7秒前
lntano发布了新的文献求助10
7秒前
曦谷发布了新的文献求助10
7秒前
hugo完成签到 ,获得积分10
8秒前
简单的凡儿完成签到,获得积分10
8秒前
bacteria完成签到,获得积分10
9秒前
9秒前
以123发布了新的文献求助10
9秒前
凌露发布了新的文献求助10
9秒前
blank发布了新的文献求助10
10秒前
ZGF发布了新的文献求助10
11秒前
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
小猴子应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
Zx_1993应助科研通管家采纳,获得10
13秒前
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得20
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262