Predictors of cognition after glioma surgery: connectotomy, structure-function phenotype, plasticity

断开 认知 计算机科学 体素 集合(抽象数据类型) 人口 功能(生物学) 人工智能 机器学习 认知心理学 心理学 神经科学 医学 生物 环境卫生 进化生物学 政治学 法学 程序设计语言
作者
Guillaume Herbet,Hugues Duffau,Maxime Descoteaux
出处
期刊:Brain [Oxford University Press]
卷期号:147 (8): 2621-2635 被引量:1
标识
DOI:10.1093/brain/awae093
摘要

Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddd完成签到 ,获得积分10
1秒前
小付完成签到,获得积分10
5秒前
Bonnie关注了科研通微信公众号
6秒前
6秒前
研路漫漫应助吴书维采纳,获得10
6秒前
小狗完成签到 ,获得积分10
7秒前
9秒前
慕青应助Boniu_wang采纳,获得10
11秒前
研路漫漫应助Xiaoxiao采纳,获得10
11秒前
江南烟雨如笙完成签到 ,获得积分10
11秒前
lp发布了新的文献求助10
13秒前
一直发布了新的文献求助10
13秒前
15秒前
Ava应助JacksonHe采纳,获得10
17秒前
17秒前
莫氓完成签到,获得积分10
18秒前
19秒前
wang完成签到 ,获得积分10
19秒前
打打应助Science采纳,获得10
19秒前
21秒前
研路漫漫发布了新的文献求助10
23秒前
24秒前
风清扬发布了新的文献求助30
24秒前
酷波er应助科研进化中采纳,获得10
24秒前
准了完成签到,获得积分20
26秒前
JamesPei应助义气绿柳采纳,获得10
28秒前
29秒前
宋祝福完成签到 ,获得积分10
29秒前
31秒前
32秒前
龙共发布了新的文献求助10
33秒前
JamesPei应助000采纳,获得10
34秒前
Science完成签到,获得积分10
34秒前
qwf完成签到 ,获得积分10
34秒前
Bonnie发布了新的文献求助10
36秒前
酷酷的冰真应助sct采纳,获得20
37秒前
HANGOVERG发布了新的文献求助30
37秒前
Science发布了新的文献求助10
38秒前
Cindy发布了新的文献求助10
38秒前
kai chen完成签到 ,获得积分0
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343