Predictors of cognition after glioma surgery: connectotomy, structure-function phenotype, plasticity

断开 认知 计算机科学 体素 集合(抽象数据类型) 人口 功能(生物学) 人工智能 机器学习 认知心理学 心理学 神经科学 医学 生物 环境卫生 进化生物学 政治学 法学 程序设计语言
作者
Guillaume Herbet,Hugues Duffau,Maxime Descoteaux
出处
期刊:Brain [Oxford University Press]
卷期号:147 (8): 2621-2635 被引量:1
标识
DOI:10.1093/brain/awae093
摘要

Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空禅yew完成签到,获得积分10
刚刚
坚强亦丝应助跳跃采纳,获得10
2秒前
英俊的铭应助cc采纳,获得10
2秒前
huangsan完成签到,获得积分10
2秒前
匹诺曹完成签到,获得积分10
2秒前
3秒前
华仔应助进取拼搏采纳,获得10
3秒前
4秒前
dingdong发布了新的文献求助10
4秒前
you完成签到 ,获得积分10
5秒前
qwf完成签到 ,获得积分10
5秒前
6秒前
万能图书馆应助一一采纳,获得10
6秒前
执着跳跳糖完成签到 ,获得积分10
7秒前
阳yang完成签到,获得积分10
7秒前
牛头人完成签到,获得积分10
7秒前
8秒前
Rrr发布了新的文献求助10
8秒前
9秒前
9秒前
serenity完成签到 ,获得积分10
9秒前
Benliu完成签到,获得积分10
9秒前
csq发布了新的文献求助10
10秒前
11秒前
Hello应助外向的醉易采纳,获得10
11秒前
DWWWDAADAD完成签到,获得积分10
14秒前
科研通AI5应助一天八杯水采纳,获得10
15秒前
杨大仙儿完成签到 ,获得积分10
15秒前
17秒前
坚强的广山应助木头人采纳,获得200
17秒前
嘻哈学习完成签到,获得积分10
17秒前
17秒前
17秒前
ying完成签到,获得积分10
18秒前
18秒前
虚幻白玉完成签到,获得积分10
19秒前
安静的孤萍完成签到,获得积分10
20秒前
20秒前
lyz666发布了新的文献求助10
20秒前
liuxl发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808