Label-text bi-attention capsule networks model for multi-label text classification

计算机科学 分类器(UML) 人工智能 文本图 嵌入 情报检索 多标签分类 图形 依赖关系(UML) 自然语言处理 文本挖掘 模式识别(心理学) 理论计算机科学
作者
Gang Wang,Yajun Du,Yurui Jiang,Jia Liu,Xianyong Li,Xiaoliang Chen,Hongmei Gao,Chunzhi Xie,Yan-Li Lee
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:588: 127671-127671 被引量:6
标识
DOI:10.1016/j.neucom.2024.127671
摘要

Multi-label text classification (MLTC) is the process of establishing relationships between documents and their corresponding labels. Previous research has focused on mining textual information, treating labels as information-less vectors in classification. This ignores the semantic and dependency relationships of labels. In real-life scenarios, the neglect of label information contradicts the classification process, which presents significant challenges for MLTC tasks. Label embedding partially resolves label information loss. Efficiently exploring semantic and dependency relationships of labels and their text connections remains a new challenge. In this paper, we propose a Label-Text Bi-Attention Capsule Networks (LTBACN) model for in-depth exploration of the dependency relationships between labels and text. Specifically, we first incorporate label information into nodes through label embedding, construct a graph structure to represent the dependency relationships between labels, and use Graph Convolutional Networks (GCN) to propagate information between nodes to further mine the relationships between labels. Subsequently, we employ a label-text bi-attention mechanism to learn the feature relationships between labels and text. The label-to-text attention mechanism extracts label-relevant text representations, while the text-to-label attention mechanism extracts the most relevant label representations for the text. We then merge these two types of feature representations to obtain fused representations that incorporate label-text bi-directional information. Finally, the fused features are fed into a capsule network classifier to capture multi-level semantic information and match the corresponding labels. The experimental results demonstrate that LTBACN outperforms other methods in terms of classification effectiveness. Compared to state-of-the-art methods, LTBACN achieves a significant improvement of 0.41%–0.68% in Micro−F1 measure, 0.52%–3.26% in Macro−F1 measure, 0.32%–2.18% in P@k measure, and 0.01%–1.18% in nDCG@k measure on the AAPD and RCV1-v2 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ完成签到,获得积分10
刚刚
CAOHOU应助zdesfsfa采纳,获得10
刚刚
1秒前
flippedaaa发布了新的文献求助10
1秒前
单薄咖啡豆完成签到 ,获得积分10
2秒前
藕饼教教徒完成签到,获得积分10
2秒前
凸迩丝儿发布了新的文献求助10
2秒前
DianaRang发布了新的文献求助10
2秒前
3秒前
咳咳咳发布了新的文献求助10
3秒前
4秒前
领导范儿应助熊猫采纳,获得20
4秒前
4秒前
抱着宇宙的星辰完成签到 ,获得积分10
4秒前
奋斗蜗牛发布了新的文献求助10
4秒前
yum发布了新的文献求助10
7秒前
追光者完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
CoreyW发布了新的文献求助10
9秒前
皂皂发布了新的文献求助10
9秒前
乐事薯片噢完成签到,获得积分10
9秒前
语冰完成签到,获得积分10
10秒前
11秒前
11秒前
zhzhzh完成签到,获得积分10
11秒前
搜集达人应助奥特曼大王采纳,获得10
11秒前
11秒前
是乐乐呀发布了新的文献求助20
12秒前
13秒前
lilei发布了新的文献求助10
14秒前
WFLLL发布了新的文献求助10
14秒前
赘婿应助乐事薯片噢采纳,获得10
15秒前
15秒前
睡睡完成签到,获得积分10
16秒前
16秒前
张张不想长大关注了科研通微信公众号
16秒前
lily发布了新的文献求助10
16秒前
鸦紗发布了新的文献求助20
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126