Label-text bi-attention capsule networks model for multi-label text classification

计算机科学 分类器(UML) 人工智能 文本图 嵌入 情报检索 多标签分类 图形 依赖关系(UML) 自然语言处理 文本挖掘 模式识别(心理学) 理论计算机科学
作者
Gang Wang,Yajun Du,Yilin Jiang,Zhen Liu,Xianyong Li,Xiaoliang Chen,Hongmei Gao,Chunzhi Xie,Yan-Li Lee
出处
期刊:Neurocomputing [Elsevier]
卷期号:588: 127671-127671
标识
DOI:10.1016/j.neucom.2024.127671
摘要

Multi-label text classification (MLTC) is the process of establishing relationships between documents and their corresponding labels. Previous research has focused on mining textual information, treating labels as information-less vectors in classification. This ignores the semantic and dependency relationships of labels. In real-life scenarios, the neglect of label information contradicts the classification process, which presents significant challenges for MLTC tasks. Label embedding partially resolves label information loss. Efficiently exploring semantic and dependency relationships of labels and their text connections remains a new challenge. In this paper, we propose a Label-Text Bi-Attention Capsule Networks (LTBACN) model for in-depth exploration of the dependency relationships between labels and text. Specifically, we first incorporate label information into nodes through label embedding, construct a graph structure to represent the dependency relationships between labels, and use Graph Convolutional Networks (GCN) to propagate information between nodes to further mine the relationships between labels. Subsequently, we employ a label-text bi-attention mechanism to learn the feature relationships between labels and text. The label-to-text attention mechanism extracts label-relevant text representations, while the text-to-label attention mechanism extracts the most relevant label representations for the text. We then merge these two types of feature representations to obtain fused representations that incorporate label-text bi-directional information. Finally, the fused features are fed into a capsule network classifier to capture multi-level semantic information and match the corresponding labels. The experimental results demonstrate that LTBACN outperforms other methods in terms of classification effectiveness. Compared to state-of-the-art methods, LTBACN achieves a significant improvement of 0.41%–0.68% in Micro−F1 measure, 0.52%–3.26% in Macro−F1 measure, 0.32%–2.18% in P@k measure, and 0.01%–1.18% in nDCG@k measure on the AAPD and RCV1-v2 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CCL应助kk2024采纳,获得50
1秒前
wjs0406完成签到,获得积分10
1秒前
自爱悠然发布了新的文献求助10
1秒前
贺雪完成签到,获得积分10
2秒前
2秒前
玉yu发布了新的文献求助10
3秒前
深情秋刀鱼完成签到,获得积分10
3秒前
星辰大海应助冷酷尔琴采纳,获得10
3秒前
3秒前
3秒前
隐形的大有完成签到,获得积分10
4秒前
浩浩大人发布了新的文献求助10
4秒前
buno应助圈圈采纳,获得10
4秒前
5秒前
隐形曼青应助Bo采纳,获得10
5秒前
西宁阿应助啵乐乐采纳,获得10
5秒前
5秒前
阿仔爱学习完成签到,获得积分10
5秒前
为喵驾车的月亮完成签到,获得积分20
6秒前
6秒前
membrane应助Mon_zh采纳,获得20
6秒前
7秒前
7秒前
hhy发布了新的文献求助10
7秒前
故意的傲玉应助结实煎饼采纳,获得200
8秒前
乐观的一一完成签到,获得积分10
8秒前
zwzw1314完成签到,获得积分10
8秒前
001发布了新的文献求助10
9秒前
FFFFFFF应助平淡南霜采纳,获得10
9秒前
Mottri发布了新的文献求助10
9秒前
10秒前
yangyang发布了新的文献求助10
10秒前
冷酷尔琴完成签到,获得积分10
10秒前
科研通AI5应助aaaaaa采纳,获得10
10秒前
顾矜应助清脆的台灯采纳,获得10
11秒前
单薄凌蝶发布了新的文献求助50
11秒前
11秒前
羊羊爱吃羊羊完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740