Physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of flow problems

偏微分方程 梯度下降 流量(数学) 应用数学 人工神经网络 数学优化 计算机科学 算法 物理 数学 数学分析 人工智能 机械
作者
Xiaojian Li,Yuhao Liu,Zhengxian Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:18
标识
DOI:10.1063/5.0151244
摘要

Physics-informed neural network (PINN) is an emerging technique for solving partial differential equations (PDEs) of flow problems. Due to the advantage of low computational cost, the gradient descent algorithms coupled with the weighted objectives method are usually used to optimize loss functions in the PINN training. However, the interaction mechanisms between gradients of loss functions are not fully clarified, leading to poor performances in loss functions optimization. For this, an adaptive gradient descent algorithm (AGDA) is proposed based on the interaction mechanisms analyses and then validated by analytical PDEs and flow problems. First, the interaction mechanisms of loss functions gradients in the PINN training based on the traditional Adam optimizer are analyzed. The main factors responsible for the poor performances of the Adam optimizer are identified. Then, a new AGDA optimizer is developed for the PINN training by two modifications: (1) balancing the magnitude difference of loss functions gradients and (2) eliminating the gradient directions conflict. Finally, three types of PDEs (elliptic, hyperbolic, and parabolic) and four viscous incompressible flow problems are selected to validate the proposed algorithm. It is found that to reach the specified accuracy, the required training time of the AGDA optimizer is about 16%–90% of the Adam optimizer and 41%–64% of the PCGrad optimizer, and the demanded number of iterations is about 10%–68% of the Adam optimizer and 38%–77% of the PCGrad optimizer. Therefore, the PINN method coupled with the AGDA optimizer is a more efficient and robust technique for solving partial differential equations of flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助辛夷采纳,获得10
1秒前
瓜瓜发布了新的文献求助10
2秒前
2秒前
后海发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
JamesPei应助补药采纳,获得10
5秒前
谢傲安完成签到,获得积分10
6秒前
Owen应助bu拿下PHD绝不回头采纳,获得10
7秒前
7秒前
sansan完成签到,获得积分10
8秒前
8秒前
123发布了新的文献求助10
9秒前
蕴蝶发布了新的文献求助10
9秒前
10秒前
12秒前
xmuchem发布了新的文献求助10
12秒前
婧婧发布了新的文献求助10
13秒前
Lucky发布了新的文献求助10
14秒前
在水一方应助cc采纳,获得10
15秒前
15秒前
15秒前
17秒前
17秒前
辛夷发布了新的文献求助10
17秒前
SciGPT应助chengxiong采纳,获得10
18秒前
mmain发布了新的文献求助10
19秒前
19秒前
敬老院N号应助LIBin采纳,获得30
20秒前
20秒前
liamddd完成签到 ,获得积分10
20秒前
21秒前
蕴蝶完成签到,获得积分10
22秒前
达瓦里氏发布了新的文献求助10
22秒前
小蘑菇应助炙热静枫采纳,获得10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
bu拿下PHD绝不回头完成签到,获得积分10
28秒前
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687