Physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of flow problems

偏微分方程 梯度下降 流量(数学) 应用数学 人工神经网络 数学优化 计算机科学 算法 物理 数学 数学分析 人工智能 机械
作者
Xiaojian Li,Yuhao Liu,Zhengxian Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:18
标识
DOI:10.1063/5.0151244
摘要

Physics-informed neural network (PINN) is an emerging technique for solving partial differential equations (PDEs) of flow problems. Due to the advantage of low computational cost, the gradient descent algorithms coupled with the weighted objectives method are usually used to optimize loss functions in the PINN training. However, the interaction mechanisms between gradients of loss functions are not fully clarified, leading to poor performances in loss functions optimization. For this, an adaptive gradient descent algorithm (AGDA) is proposed based on the interaction mechanisms analyses and then validated by analytical PDEs and flow problems. First, the interaction mechanisms of loss functions gradients in the PINN training based on the traditional Adam optimizer are analyzed. The main factors responsible for the poor performances of the Adam optimizer are identified. Then, a new AGDA optimizer is developed for the PINN training by two modifications: (1) balancing the magnitude difference of loss functions gradients and (2) eliminating the gradient directions conflict. Finally, three types of PDEs (elliptic, hyperbolic, and parabolic) and four viscous incompressible flow problems are selected to validate the proposed algorithm. It is found that to reach the specified accuracy, the required training time of the AGDA optimizer is about 16%–90% of the Adam optimizer and 41%–64% of the PCGrad optimizer, and the demanded number of iterations is about 10%–68% of the Adam optimizer and 38%–77% of the PCGrad optimizer. Therefore, the PINN method coupled with the AGDA optimizer is a more efficient and robust technique for solving partial differential equations of flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助10
1秒前
平淡远航完成签到,获得积分10
1秒前
1秒前
月之璇发布了新的文献求助10
2秒前
蜀安应助xiekunwhy采纳,获得30
2秒前
ccboom发布了新的文献求助10
3秒前
徐涛完成签到,获得积分10
3秒前
3秒前
4秒前
清腾发布了新的文献求助10
4秒前
4秒前
Hale完成签到,获得积分0
4秒前
5秒前
贺喆完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
star应助芍药采纳,获得10
5秒前
RE完成签到 ,获得积分10
5秒前
emuscle完成签到,获得积分10
5秒前
Rose完成签到,获得积分10
5秒前
o1g发布了新的文献求助10
6秒前
朴实山兰完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助李志采纳,获得10
7秒前
江子完成签到 ,获得积分10
7秒前
LIANG发布了新的文献求助10
7秒前
577关闭了577文献求助
7秒前
Hello应助贺喆采纳,获得10
7秒前
糊涂的冰菱完成签到,获得积分10
8秒前
Hello应助无情的宛儿采纳,获得100
8秒前
在水一方应助哈1823145采纳,获得10
8秒前
8秒前
yourenpkma123发布了新的文献求助10
8秒前
9秒前
罗coming完成签到,获得积分10
9秒前
无医发布了新的文献求助10
9秒前
Eliauk完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721