Physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of flow problems

偏微分方程 梯度下降 流量(数学) 应用数学 人工神经网络 数学优化 计算机科学 算法 物理 数学 数学分析 人工智能 机械
作者
Xiaojian Li,Yuhao Liu,Zhengxian Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:9
标识
DOI:10.1063/5.0151244
摘要

Physics-informed neural network (PINN) is an emerging technique for solving partial differential equations (PDEs) of flow problems. Due to the advantage of low computational cost, the gradient descent algorithms coupled with the weighted objectives method are usually used to optimize loss functions in the PINN training. However, the interaction mechanisms between gradients of loss functions are not fully clarified, leading to poor performances in loss functions optimization. For this, an adaptive gradient descent algorithm (AGDA) is proposed based on the interaction mechanisms analyses and then validated by analytical PDEs and flow problems. First, the interaction mechanisms of loss functions gradients in the PINN training based on the traditional Adam optimizer are analyzed. The main factors responsible for the poor performances of the Adam optimizer are identified. Then, a new AGDA optimizer is developed for the PINN training by two modifications: (1) balancing the magnitude difference of loss functions gradients and (2) eliminating the gradient directions conflict. Finally, three types of PDEs (elliptic, hyperbolic, and parabolic) and four viscous incompressible flow problems are selected to validate the proposed algorithm. It is found that to reach the specified accuracy, the required training time of the AGDA optimizer is about 16%–90% of the Adam optimizer and 41%–64% of the PCGrad optimizer, and the demanded number of iterations is about 10%–68% of the Adam optimizer and 38%–77% of the PCGrad optimizer. Therefore, the PINN method coupled with the AGDA optimizer is a more efficient and robust technique for solving partial differential equations of flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
surain发布了新的文献求助200
2秒前
3秒前
老老实实好好活着完成签到,获得积分10
4秒前
大桃完成签到,获得积分10
5秒前
6秒前
mz完成签到,获得积分10
8秒前
李子维完成签到 ,获得积分10
8秒前
surain完成签到,获得积分10
9秒前
9秒前
runner完成签到,获得积分10
11秒前
1230完成签到 ,获得积分10
11秒前
Yvonne发布了新的文献求助10
12秒前
yuliuism完成签到,获得积分10
17秒前
Gt完成签到,获得积分10
17秒前
21秒前
22秒前
Singularity应助科研通管家采纳,获得20
22秒前
Orange应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
xiao完成签到,获得积分10
22秒前
奇异喵完成签到,获得积分20
23秒前
23秒前
Fan发布了新的文献求助30
23秒前
彭于晏应助忧虑的花卷采纳,获得10
23秒前
自然的冥王星完成签到,获得积分10
24秒前
口米嘻发布了新的文献求助10
24秒前
xiao发布了新的文献求助10
25秒前
奇异喵发布了新的文献求助10
26秒前
melody完成签到,获得积分10
28秒前
夹心发布了新的文献求助10
29秒前
30秒前
qwe1108完成签到 ,获得积分10
30秒前
melody发布了新的文献求助10
30秒前
研友_Lmbz1n完成签到,获得积分10
31秒前
32秒前
韩十四完成签到 ,获得积分10
32秒前
忧虑的花卷完成签到,获得积分10
32秒前
33秒前
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143679
求助须知:如何正确求助?哪些是违规求助? 2795139
关于积分的说明 7813405
捐赠科研通 2451158
什么是DOI,文献DOI怎么找? 1304338
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393