Physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of flow problems

偏微分方程 梯度下降 流量(数学) 应用数学 人工神经网络 数学优化 计算机科学 算法 物理 数学 数学分析 人工智能 机械
作者
Xiaojian Li,Yuhao Liu,Zhengxian Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:18
标识
DOI:10.1063/5.0151244
摘要

Physics-informed neural network (PINN) is an emerging technique for solving partial differential equations (PDEs) of flow problems. Due to the advantage of low computational cost, the gradient descent algorithms coupled with the weighted objectives method are usually used to optimize loss functions in the PINN training. However, the interaction mechanisms between gradients of loss functions are not fully clarified, leading to poor performances in loss functions optimization. For this, an adaptive gradient descent algorithm (AGDA) is proposed based on the interaction mechanisms analyses and then validated by analytical PDEs and flow problems. First, the interaction mechanisms of loss functions gradients in the PINN training based on the traditional Adam optimizer are analyzed. The main factors responsible for the poor performances of the Adam optimizer are identified. Then, a new AGDA optimizer is developed for the PINN training by two modifications: (1) balancing the magnitude difference of loss functions gradients and (2) eliminating the gradient directions conflict. Finally, three types of PDEs (elliptic, hyperbolic, and parabolic) and four viscous incompressible flow problems are selected to validate the proposed algorithm. It is found that to reach the specified accuracy, the required training time of the AGDA optimizer is about 16%–90% of the Adam optimizer and 41%–64% of the PCGrad optimizer, and the demanded number of iterations is about 10%–68% of the Adam optimizer and 38%–77% of the PCGrad optimizer. Therefore, the PINN method coupled with the AGDA optimizer is a more efficient and robust technique for solving partial differential equations of flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
净心完成签到 ,获得积分10
刚刚
刚刚
哈尼完成签到,获得积分10
1秒前
3秒前
香蕉觅云应助Yi采纳,获得10
3秒前
3秒前
悦耳的芒果完成签到,获得积分10
5秒前
江城完成签到,获得积分10
5秒前
hanyangyang完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
leuchten完成签到,获得积分10
6秒前
thinking完成签到,获得积分10
6秒前
Miner完成签到,获得积分10
6秒前
Quency完成签到 ,获得积分10
7秒前
8秒前
邵振启发布了新的文献求助10
8秒前
jzmulyl完成签到,获得积分10
9秒前
潇洒的白昼完成签到,获得积分10
9秒前
没羽箭发布了新的文献求助10
10秒前
煎饼狗子完成签到,获得积分20
10秒前
彭于晏应助王旭采纳,获得10
11秒前
zJx丶完成签到,获得积分10
11秒前
跳跃的滑板完成签到,获得积分10
12秒前
小象完成签到,获得积分10
12秒前
13秒前
Raki完成签到,获得积分10
14秒前
往返完成签到,获得积分10
14秒前
hallie完成签到,获得积分10
14秒前
Tammy完成签到,获得积分10
15秒前
鲤鱼怀绿完成签到,获得积分10
15秒前
个性的酒窝完成签到,获得积分10
16秒前
Hqing完成签到 ,获得积分10
16秒前
kitsch完成签到 ,获得积分10
16秒前
科研的人完成签到 ,获得积分10
18秒前
张豪完成签到,获得积分10
18秒前
精神美丽完成签到,获得积分10
18秒前
耍酷寻双完成签到 ,获得积分0
18秒前
佳佳完成签到,获得积分10
18秒前
追梦1998完成签到,获得积分10
18秒前
jzmupyj完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651587
求助须知:如何正确求助?哪些是违规求助? 4785291
关于积分的说明 15054465
捐赠科研通 4810222
什么是DOI,文献DOI怎么找? 2573037
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934