Physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of flow problems

偏微分方程 梯度下降 流量(数学) 应用数学 人工神经网络 数学优化 计算机科学 算法 物理 数学 数学分析 人工智能 机械
作者
Xiaojian Li,Yuhao Liu,Zhengxian Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:18
标识
DOI:10.1063/5.0151244
摘要

Physics-informed neural network (PINN) is an emerging technique for solving partial differential equations (PDEs) of flow problems. Due to the advantage of low computational cost, the gradient descent algorithms coupled with the weighted objectives method are usually used to optimize loss functions in the PINN training. However, the interaction mechanisms between gradients of loss functions are not fully clarified, leading to poor performances in loss functions optimization. For this, an adaptive gradient descent algorithm (AGDA) is proposed based on the interaction mechanisms analyses and then validated by analytical PDEs and flow problems. First, the interaction mechanisms of loss functions gradients in the PINN training based on the traditional Adam optimizer are analyzed. The main factors responsible for the poor performances of the Adam optimizer are identified. Then, a new AGDA optimizer is developed for the PINN training by two modifications: (1) balancing the magnitude difference of loss functions gradients and (2) eliminating the gradient directions conflict. Finally, three types of PDEs (elliptic, hyperbolic, and parabolic) and four viscous incompressible flow problems are selected to validate the proposed algorithm. It is found that to reach the specified accuracy, the required training time of the AGDA optimizer is about 16%–90% of the Adam optimizer and 41%–64% of the PCGrad optimizer, and the demanded number of iterations is about 10%–68% of the Adam optimizer and 38%–77% of the PCGrad optimizer. Therefore, the PINN method coupled with the AGDA optimizer is a more efficient and robust technique for solving partial differential equations of flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助minjeong采纳,获得10
1秒前
隐形曼青应助坚定笑蓝采纳,获得10
1秒前
flame完成签到 ,获得积分10
2秒前
2秒前
2秒前
炙热灰狼完成签到,获得积分10
2秒前
搜集达人应助Chenjunxian采纳,获得10
2秒前
Espoir发布了新的文献求助10
3秒前
3秒前
Owen应助阔达的太阳采纳,获得10
4秒前
刘不怂完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
xiaojiu发布了新的文献求助10
5秒前
5秒前
5秒前
浮游应助lxb采纳,获得10
6秒前
最佳赏味期完成签到,获得积分10
6秒前
科研通AI5应助野格三明治采纳,获得50
6秒前
anan发布了新的文献求助30
6秒前
6秒前
炙热灰狼发布了新的文献求助10
6秒前
JamesPei应助怕孤单的平卉采纳,获得10
7秒前
阿李发布了新的文献求助10
7秒前
susu完成签到,获得积分10
7秒前
7秒前
11111发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
SUN发布了新的文献求助10
9秒前
君莫笑发布了新的文献求助10
10秒前
屯屯鱼发布了新的文献求助10
10秒前
大模型应助周文瑶采纳,获得10
11秒前
赘婿应助misaka采纳,获得10
11秒前
小二郎应助小杜采纳,获得10
11秒前
hhc完成签到,获得积分10
11秒前
11秒前
11秒前
娇弱绿茶完成签到,获得积分10
11秒前
Owen应助Espoir采纳,获得10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205682
求助须知:如何正确求助?哪些是违规求助? 4384419
关于积分的说明 13652819
捐赠科研通 4242511
什么是DOI,文献DOI怎么找? 2327518
邀请新用户注册赠送积分活动 1325287
关于科研通互助平台的介绍 1277428