Physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of flow problems

偏微分方程 梯度下降 流量(数学) 应用数学 人工神经网络 数学优化 计算机科学 算法 物理 数学 数学分析 人工智能 机械
作者
Xiaojian Li,Yuhao Liu,Zhengxian Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:22
标识
DOI:10.1063/5.0151244
摘要

Physics-informed neural network (PINN) is an emerging technique for solving partial differential equations (PDEs) of flow problems. Due to the advantage of low computational cost, the gradient descent algorithms coupled with the weighted objectives method are usually used to optimize loss functions in the PINN training. However, the interaction mechanisms between gradients of loss functions are not fully clarified, leading to poor performances in loss functions optimization. For this, an adaptive gradient descent algorithm (AGDA) is proposed based on the interaction mechanisms analyses and then validated by analytical PDEs and flow problems. First, the interaction mechanisms of loss functions gradients in the PINN training based on the traditional Adam optimizer are analyzed. The main factors responsible for the poor performances of the Adam optimizer are identified. Then, a new AGDA optimizer is developed for the PINN training by two modifications: (1) balancing the magnitude difference of loss functions gradients and (2) eliminating the gradient directions conflict. Finally, three types of PDEs (elliptic, hyperbolic, and parabolic) and four viscous incompressible flow problems are selected to validate the proposed algorithm. It is found that to reach the specified accuracy, the required training time of the AGDA optimizer is about 16%–90% of the Adam optimizer and 41%–64% of the PCGrad optimizer, and the demanded number of iterations is about 10%–68% of the Adam optimizer and 38%–77% of the PCGrad optimizer. Therefore, the PINN method coupled with the AGDA optimizer is a more efficient and robust technique for solving partial differential equations of flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666发布了新的文献求助10
刚刚
上官若男应助江阳宏采纳,获得50
1秒前
陆康完成签到 ,获得积分10
1秒前
tonyfountain完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
王海海完成签到 ,获得积分10
3秒前
99giddens应助杨咩咩采纳,获得200
3秒前
科研通AI2S应助优秀傲松采纳,获得10
4秒前
欣慰的醉香完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
修文发布了新的文献求助10
5秒前
所所应助自由雅容采纳,获得10
5秒前
Yu发布了新的文献求助10
5秒前
带头大哥应助None采纳,获得10
6秒前
科研通AI6.1应助ZeKaWang采纳,获得50
6秒前
Owen应助飞飞采纳,获得10
7秒前
8秒前
VK2801发布了新的文献求助10
8秒前
陈隆发布了新的文献求助10
8秒前
HH应助Yqx采纳,获得10
8秒前
9秒前
善学以致用应助zzh采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
傲娇黄豆完成签到,获得积分10
10秒前
mumumumu完成签到,获得积分20
10秒前
安详冰夏发布了新的文献求助10
11秒前
11秒前
充电宝应助Duqianying采纳,获得10
11秒前
12秒前
清爽的铭发布了新的文献求助20
13秒前
冰雪物语发布了新的文献求助10
13秒前
erhao发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609