Physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of flow problems

偏微分方程 梯度下降 流量(数学) 应用数学 人工神经网络 数学优化 计算机科学 算法 物理 数学 数学分析 人工智能 机械
作者
Xiaojian Li,Yuhao Liu,Zhengxian Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:22
标识
DOI:10.1063/5.0151244
摘要

Physics-informed neural network (PINN) is an emerging technique for solving partial differential equations (PDEs) of flow problems. Due to the advantage of low computational cost, the gradient descent algorithms coupled with the weighted objectives method are usually used to optimize loss functions in the PINN training. However, the interaction mechanisms between gradients of loss functions are not fully clarified, leading to poor performances in loss functions optimization. For this, an adaptive gradient descent algorithm (AGDA) is proposed based on the interaction mechanisms analyses and then validated by analytical PDEs and flow problems. First, the interaction mechanisms of loss functions gradients in the PINN training based on the traditional Adam optimizer are analyzed. The main factors responsible for the poor performances of the Adam optimizer are identified. Then, a new AGDA optimizer is developed for the PINN training by two modifications: (1) balancing the magnitude difference of loss functions gradients and (2) eliminating the gradient directions conflict. Finally, three types of PDEs (elliptic, hyperbolic, and parabolic) and four viscous incompressible flow problems are selected to validate the proposed algorithm. It is found that to reach the specified accuracy, the required training time of the AGDA optimizer is about 16%–90% of the Adam optimizer and 41%–64% of the PCGrad optimizer, and the demanded number of iterations is about 10%–68% of the Adam optimizer and 38%–77% of the PCGrad optimizer. Therefore, the PINN method coupled with the AGDA optimizer is a more efficient and robust technique for solving partial differential equations of flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助30
2秒前
果酱发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
暖心人士完成签到 ,获得积分10
6秒前
7秒前
8秒前
小天才发布了新的文献求助10
8秒前
吱吱吱发布了新的文献求助10
9秒前
10秒前
CodeCraft应助shi采纳,获得10
10秒前
CipherSage应助芋头采纳,获得10
10秒前
11秒前
怕黑的小蘑菇完成签到,获得积分10
12秒前
搜集达人应助keren采纳,获得10
12秒前
善学以致用应助鱼鱼吖采纳,获得10
13秒前
13秒前
yyyyy发布了新的文献求助10
13秒前
kepler完成签到,获得积分10
13秒前
小天才完成签到,获得积分20
15秒前
天空之下发布了新的文献求助10
15秒前
在水一方应助阔达的唇膏采纳,获得10
15秒前
璐璐姐最牛逼完成签到,获得积分10
15秒前
曲水流觞给曲水流觞的求助进行了留言
17秒前
善学以致用应助大丸子采纳,获得10
17秒前
桐桐应助轻松的仇血采纳,获得10
19秒前
Yuanyuan发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
21秒前
英姑应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
无极微光应助科研通管家采纳,获得20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317