Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models

机器学习 接收机工作特性 人工智能 校准 随机森林 医学 预测建模 支持向量机 系统回顾 计算机科学 梅德林 统计 数学 政治学 法学
作者
Constanza L. Andaur Navarro,Johanna AAG Damen,Maarten van Smeden,Toshihiko Takada,Steven W J Nijman,Paula Dhiman,Jie Ma,Gary S. Collins,Ram Bajpai,Richard D. Riley,Karel G.M. Moons,Lotty Hooft
出处
期刊:Journal of Clinical Epidemiology [Elsevier]
卷期号:154: 8-22 被引量:41
标识
DOI:10.1016/j.jclinepi.2022.11.015
摘要

Background and ObjectivesWe sought to summarize the study design, modelling strategies, and performance measures reported in studies on clinical prediction models developed using machine learning techniques.MethodsWe search PubMed for articles published between 01/01/2018 and 31/12/2019, describing the development or the development with external validation of a multivariable prediction model using any supervised machine learning technique. No restrictions were made based on study design, data source, or predicted patient-related health outcomes.ResultsWe included 152 studies, 58 (38.2% [95% CI 30.8–46.1]) were diagnostic and 94 (61.8% [95% CI 53.9–69.2]) prognostic studies. Most studies reported only the development of prediction models (n = 133, 87.5% [95% CI 81.3–91.8]), focused on binary outcomes (n = 131, 86.2% [95% CI 79.8–90.8), and did not report a sample size calculation (n = 125, 82.2% [95% CI 75.4–87.5]). The most common algorithms used were support vector machine (n = 86/522, 16.5% [95% CI 13.5–19.9]) and random forest (n = 73/522, 14% [95% CI 11.3–17.2]). Values for area under the Receiver Operating Characteristic curve ranged from 0.45 to 1.00. Calibration metrics were often missed (n = 494/522, 94.6% [95% CI 92.4–96.3]).ConclusionOur review revealed that focus is required on handling of missing values, methods for internal validation, and reporting of calibration to improve the methodological conduct of studies on machine learning–based prediction models.Systematic review registrationPROSPERO, CRD42019161764.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
李楼村完成签到,获得积分10
1秒前
h丶小虫完成签到,获得积分10
1秒前
腼腆的耷发布了新的文献求助10
2秒前
zhou发布了新的文献求助10
2秒前
亳亳发布了新的文献求助10
2秒前
Genius发布了新的文献求助10
2秒前
李老头发布了新的文献求助10
2秒前
3秒前
情怀应助邻街采纳,获得10
4秒前
4秒前
gl7183完成签到,获得积分10
4秒前
4秒前
5秒前
自由的聋五完成签到,获得积分10
5秒前
jackmilton完成签到,获得积分10
5秒前
深渊与海发布了新的文献求助10
5秒前
xuyw应助岩中花述采纳,获得10
5秒前
6秒前
西瓜发布了新的文献求助10
7秒前
科研通AI6应助风中泰坦采纳,获得10
7秒前
852应助晴朗采纳,获得10
8秒前
Aurora发布了新的文献求助10
8秒前
8秒前
壹吾鱼完成签到,获得积分10
8秒前
9秒前
152van发布了新的文献求助10
9秒前
小衫生完成签到,获得积分20
9秒前
ZhangHaoYuan完成签到,获得积分10
10秒前
隐形曼青应助yu采纳,获得10
11秒前
11秒前
12秒前
13秒前
科研通AI6应助xmingpsy采纳,获得10
13秒前
13秒前
13秒前
华仔应助李楼村采纳,获得10
14秒前
科研通AI6应助xiaofeifantasy采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906