Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models

机器学习 接收机工作特性 人工智能 校准 随机森林 医学 预测建模 支持向量机 系统回顾 计算机科学 梅德林 统计 数学 政治学 法学
作者
Constanza L. Andaur Navarro,Johanna AAG Damen,Maarten van Smeden,Toshihiko Takada,Steven W J Nijman,Paula Dhiman,Jie Ma,Gary S. Collins,Ram Bajpai,Richard D. Riley,Karel G.M. Moons,Lotty Hooft
出处
期刊:Journal of Clinical Epidemiology [Elsevier BV]
卷期号:154: 8-22 被引量:41
标识
DOI:10.1016/j.jclinepi.2022.11.015
摘要

Background and ObjectivesWe sought to summarize the study design, modelling strategies, and performance measures reported in studies on clinical prediction models developed using machine learning techniques.MethodsWe search PubMed for articles published between 01/01/2018 and 31/12/2019, describing the development or the development with external validation of a multivariable prediction model using any supervised machine learning technique. No restrictions were made based on study design, data source, or predicted patient-related health outcomes.ResultsWe included 152 studies, 58 (38.2% [95% CI 30.8–46.1]) were diagnostic and 94 (61.8% [95% CI 53.9–69.2]) prognostic studies. Most studies reported only the development of prediction models (n = 133, 87.5% [95% CI 81.3–91.8]), focused on binary outcomes (n = 131, 86.2% [95% CI 79.8–90.8), and did not report a sample size calculation (n = 125, 82.2% [95% CI 75.4–87.5]). The most common algorithms used were support vector machine (n = 86/522, 16.5% [95% CI 13.5–19.9]) and random forest (n = 73/522, 14% [95% CI 11.3–17.2]). Values for area under the Receiver Operating Characteristic curve ranged from 0.45 to 1.00. Calibration metrics were often missed (n = 494/522, 94.6% [95% CI 92.4–96.3]).ConclusionOur review revealed that focus is required on handling of missing values, methods for internal validation, and reporting of calibration to improve the methodological conduct of studies on machine learning–based prediction models.Systematic review registrationPROSPERO, CRD42019161764.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神羊发布了新的文献求助10
刚刚
lily完成签到,获得积分10
1秒前
1秒前
傅宣发布了新的文献求助10
1秒前
1秒前
ocean完成签到,获得积分10
1秒前
某某1发布了新的文献求助30
2秒前
丘比特应助molec采纳,获得10
2秒前
2秒前
weirdo完成签到,获得积分10
2秒前
corazon发布了新的文献求助10
3秒前
3秒前
Owen应助子子子子瞻采纳,获得10
3秒前
TT发布了新的文献求助10
3秒前
3秒前
3秒前
小二郎应助王来敏采纳,获得10
3秒前
科研完成签到,获得积分10
3秒前
纷花雨完成签到,获得积分10
4秒前
Rdeohio完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
ocean发布了新的文献求助10
5秒前
5秒前
优雅的盼夏发布了新的文献求助150
5秒前
斯文败类应助无蝉的夏天采纳,获得10
6秒前
高挑的谷槐完成签到,获得积分10
6秒前
科研通AI2S应助英俊的尔曼采纳,获得10
7秒前
Suis完成签到,获得积分10
7秒前
111发布了新的文献求助10
7秒前
宠仙发布了新的文献求助10
7秒前
大模型应助Wang采纳,获得10
8秒前
赘婿应助追寻的梦凡采纳,获得10
8秒前
爱听歌契完成签到 ,获得积分10
9秒前
七言发布了新的文献求助10
9秒前
lllmmm完成签到,获得积分10
10秒前
10秒前
乐乐发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635