Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models

机器学习 接收机工作特性 人工智能 校准 随机森林 医学 预测建模 支持向量机 系统回顾 计算机科学 梅德林 统计 数学 政治学 法学
作者
Constanza L. Andaur Navarro,Johanna AAG Damen,Maarten van Smeden,Toshihiko Takada,Steven W J Nijman,Paula Dhiman,Jie Ma,Gary S. Collins,Ram Bajpai,Richard D. Riley,Karel G.M. Moons,Lotty Hooft
出处
期刊:Journal of Clinical Epidemiology [Elsevier]
卷期号:154: 8-22 被引量:41
标识
DOI:10.1016/j.jclinepi.2022.11.015
摘要

Background and ObjectivesWe sought to summarize the study design, modelling strategies, and performance measures reported in studies on clinical prediction models developed using machine learning techniques.MethodsWe search PubMed for articles published between 01/01/2018 and 31/12/2019, describing the development or the development with external validation of a multivariable prediction model using any supervised machine learning technique. No restrictions were made based on study design, data source, or predicted patient-related health outcomes.ResultsWe included 152 studies, 58 (38.2% [95% CI 30.8–46.1]) were diagnostic and 94 (61.8% [95% CI 53.9–69.2]) prognostic studies. Most studies reported only the development of prediction models (n = 133, 87.5% [95% CI 81.3–91.8]), focused on binary outcomes (n = 131, 86.2% [95% CI 79.8–90.8), and did not report a sample size calculation (n = 125, 82.2% [95% CI 75.4–87.5]). The most common algorithms used were support vector machine (n = 86/522, 16.5% [95% CI 13.5–19.9]) and random forest (n = 73/522, 14% [95% CI 11.3–17.2]). Values for area under the Receiver Operating Characteristic curve ranged from 0.45 to 1.00. Calibration metrics were often missed (n = 494/522, 94.6% [95% CI 92.4–96.3]).ConclusionOur review revealed that focus is required on handling of missing values, methods for internal validation, and reporting of calibration to improve the methodological conduct of studies on machine learning–based prediction models.Systematic review registrationPROSPERO, CRD42019161764.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助Frank采纳,获得10
1秒前
宋嘉骅发布了新的文献求助10
2秒前
陈玉玲完成签到,获得积分10
3秒前
贺贺完成签到,获得积分10
3秒前
wujiwuhui发布了新的文献求助10
4秒前
5秒前
5秒前
安然完成签到 ,获得积分10
5秒前
6秒前
jal西木完成签到,获得积分10
8秒前
科研通AI6应助1280065188采纳,获得10
9秒前
王海祥完成签到 ,获得积分10
10秒前
wgl200212发布了新的文献求助10
11秒前
15秒前
17秒前
清修完成签到,获得积分10
18秒前
酿雪未成完成签到,获得积分10
18秒前
小蘑菇应助英勇安筠采纳,获得10
18秒前
唐唐发布了新的文献求助30
19秒前
研友_VZG7GZ应助Hipchengi采纳,获得20
22秒前
23秒前
yangl发布了新的文献求助10
23秒前
28秒前
qianqina发布了新的文献求助10
30秒前
托托完成签到,获得积分10
32秒前
丘比特应助果小镁采纳,获得10
32秒前
32秒前
dd发布了新的文献求助10
32秒前
科研通AI6应助行者无疆采纳,获得10
36秒前
Hipchengi发布了新的文献求助20
37秒前
37秒前
文静的蜗牛完成签到,获得积分10
39秒前
zh完成签到,获得积分10
41秒前
41秒前
42秒前
果小镁发布了新的文献求助10
43秒前
共享精神应助吕亦寒采纳,获得10
43秒前
斯文败类应助认真的思枫采纳,获得10
44秒前
Jodie发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645296
关于积分的说明 14674744
捐赠科研通 4586398
什么是DOI,文献DOI怎么找? 2516422
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870