Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models

机器学习 接收机工作特性 人工智能 校准 随机森林 医学 预测建模 支持向量机 系统回顾 计算机科学 梅德林 统计 数学 政治学 法学
作者
Constanza L. Andaur Navarro,Johanna AAG Damen,Maarten van Smeden,Toshihiko Takada,Steven W J Nijman,Paula Dhiman,Jie Ma,Gary S. Collins,Ram Bajpai,Richard D. Riley,Karel G.M. Moons,Lotty Hooft
出处
期刊:Journal of Clinical Epidemiology [Elsevier]
卷期号:154: 8-22 被引量:41
标识
DOI:10.1016/j.jclinepi.2022.11.015
摘要

Background and ObjectivesWe sought to summarize the study design, modelling strategies, and performance measures reported in studies on clinical prediction models developed using machine learning techniques.MethodsWe search PubMed for articles published between 01/01/2018 and 31/12/2019, describing the development or the development with external validation of a multivariable prediction model using any supervised machine learning technique. No restrictions were made based on study design, data source, or predicted patient-related health outcomes.ResultsWe included 152 studies, 58 (38.2% [95% CI 30.8–46.1]) were diagnostic and 94 (61.8% [95% CI 53.9–69.2]) prognostic studies. Most studies reported only the development of prediction models (n = 133, 87.5% [95% CI 81.3–91.8]), focused on binary outcomes (n = 131, 86.2% [95% CI 79.8–90.8), and did not report a sample size calculation (n = 125, 82.2% [95% CI 75.4–87.5]). The most common algorithms used were support vector machine (n = 86/522, 16.5% [95% CI 13.5–19.9]) and random forest (n = 73/522, 14% [95% CI 11.3–17.2]). Values for area under the Receiver Operating Characteristic curve ranged from 0.45 to 1.00. Calibration metrics were often missed (n = 494/522, 94.6% [95% CI 92.4–96.3]).ConclusionOur review revealed that focus is required on handling of missing values, methods for internal validation, and reporting of calibration to improve the methodological conduct of studies on machine learning–based prediction models.Systematic review registrationPROSPERO, CRD42019161764.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌予完成签到,获得积分20
1秒前
乐乐应助陈太采纳,获得30
2秒前
2秒前
小马甲应助ZSM911采纳,获得10
3秒前
友好的蛋挞完成签到 ,获得积分10
3秒前
传奇3应助科研顺利采纳,获得10
6秒前
Orange应助惠凡白采纳,获得10
8秒前
传奇3应助林老师采纳,获得10
8秒前
LSY发布了新的文献求助200
8秒前
InfoNinja应助科研小白采纳,获得30
9秒前
小博carl给ruter的求助进行了留言
9秒前
漪澜完成签到 ,获得积分20
10秒前
scine86完成签到,获得积分20
10秒前
曾经天德发布了新的文献求助20
11秒前
11秒前
liubobo发布了新的文献求助80
12秒前
CodeCraft应助糊糊涂涂采纳,获得10
12秒前
听风轻语完成签到,获得积分10
13秒前
小董懂不懂关注了科研通微信公众号
13秒前
所所应助多情的不凡采纳,获得10
13秒前
劲秉应助123采纳,获得30
13秒前
科研顺利完成签到,获得积分10
14秒前
14秒前
14秒前
天天快乐应助阿越采纳,获得30
15秒前
scine86发布了新的文献求助10
16秒前
科研小白完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
深情安青应助Huajing_Yang采纳,获得10
18秒前
XD发布了新的文献求助10
18秒前
mylord发布了新的文献求助10
19秒前
20秒前
叶子宁完成签到,获得积分10
20秒前
chengya发布了新的文献求助10
20秒前
迅速曼冬完成签到 ,获得积分10
22秒前
weiming完成签到,获得积分10
22秒前
幸福的千琴完成签到,获得积分10
23秒前
24秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206106
求助须知:如何正确求助?哪些是违规求助? 2855475
关于积分的说明 8099633
捐赠科研通 2520516
什么是DOI,文献DOI怎么找? 1353428
科研通“疑难数据库(出版商)”最低求助积分说明 641741
邀请新用户注册赠送积分活动 612850