Underwater sEMG-based recognition of hand gestures using tensor decomposition

水下 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 特征提取 信号(编程语言) 手势 特征(语言学) 语音识别 计算机视觉 地质学 哲学 程序设计语言 图像(数学) 海洋学 语言学
作者
Jianing Xue,Zhe Sun,Feng Duan,César F. Caiafa,Jordi Solé-Casals
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:165: 39-46
标识
DOI:10.1016/j.patrec.2022.11.021
摘要

Amputees have limited ability to complete specific movements because of the loss of hands. Prosthetic hands can help amputees as an effective human-computer interaction system in their daily lives, and some amputees need to use the prosthetic hands for underwater operations. Therefore, it is necessary to solve the problem of using prosthetic hands underwater. There are two main problems in underwater surface Electromyogram (sEMG) signal recognition. The underwater sEMG signals are disturbed by noise, and the traditional sEMG features are easily affected by noise, decreasing the recognition accuracy of underwater sEMG signals. It is difficult for subjects to acquire quantity training data underwater, and satisfactory sEMG recognition accuracy needs to be obtained based on small datasets. Tensor decomposition has the advantage of finding potential features of signals, and it is widely used in many fields. Tucker tensor decomposition was used for feature extraction and recognition of underwater sEMG signals. Seven subjects were selected to complete four hand gestures underwater and two-channel sEMG signals were collected. Wavelet transform was applied to generate a three-dimensional tensor and extracted signal features by tensor decomposition. The recognition accuracy based on K-Nearest Neighbor reaches 96.43%. The results show that the proposed sEMG feature extraction method based on tensor decomposition helps improve the recognition accuracy of underwater sEMG signals, which provides a basis for applying prosthetic hands in a water environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
15秒前
小陈发布了新的文献求助10
16秒前
meizi0109完成签到 ,获得积分10
19秒前
25秒前
风雨潇湘完成签到,获得积分10
25秒前
无私糖豆发布了新的文献求助10
30秒前
汉堡包应助Bonaventure采纳,获得30
33秒前
Ava应助果蝇采纳,获得10
34秒前
小罗完成签到 ,获得积分10
40秒前
wnche完成签到,获得积分10
43秒前
王小小翔完成签到,获得积分10
51秒前
Nick发布了新的文献求助10
51秒前
在水一方应助铜锣烧采纳,获得10
52秒前
海棠花未眠完成签到,获得积分10
52秒前
wenhuanwenxian完成签到 ,获得积分10
58秒前
98完成签到,获得积分10
58秒前
min完成签到,获得积分10
59秒前
ooo完成签到 ,获得积分10
1分钟前
1分钟前
Bonaventure发布了新的文献求助30
1分钟前
新的旅程完成签到,获得积分10
1分钟前
1分钟前
Jasmine发布了新的文献求助10
1分钟前
zxx完成签到 ,获得积分0
1分钟前
phj完成签到,获得积分10
1分钟前
gsokok完成签到 ,获得积分10
1分钟前
闪闪星星完成签到,获得积分10
1分钟前
追寻清完成签到,获得积分10
1分钟前
1分钟前
鱼淼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506