Underwater sEMG-based recognition of hand gestures using tensor decomposition

水下 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 特征提取 信号(编程语言) 手势 特征(语言学) 语音识别 计算机视觉 地质学 哲学 程序设计语言 图像(数学) 海洋学 语言学
作者
Jianing Xue,Zhe Sun,Feng Duan,César F. Caiafa,Jordi Solé-Casals
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:165: 39-46
标识
DOI:10.1016/j.patrec.2022.11.021
摘要

Amputees have limited ability to complete specific movements because of the loss of hands. Prosthetic hands can help amputees as an effective human-computer interaction system in their daily lives, and some amputees need to use the prosthetic hands for underwater operations. Therefore, it is necessary to solve the problem of using prosthetic hands underwater. There are two main problems in underwater surface Electromyogram (sEMG) signal recognition. The underwater sEMG signals are disturbed by noise, and the traditional sEMG features are easily affected by noise, decreasing the recognition accuracy of underwater sEMG signals. It is difficult for subjects to acquire quantity training data underwater, and satisfactory sEMG recognition accuracy needs to be obtained based on small datasets. Tensor decomposition has the advantage of finding potential features of signals, and it is widely used in many fields. Tucker tensor decomposition was used for feature extraction and recognition of underwater sEMG signals. Seven subjects were selected to complete four hand gestures underwater and two-channel sEMG signals were collected. Wavelet transform was applied to generate a three-dimensional tensor and extracted signal features by tensor decomposition. The recognition accuracy based on K-Nearest Neighbor reaches 96.43%. The results show that the proposed sEMG feature extraction method based on tensor decomposition helps improve the recognition accuracy of underwater sEMG signals, which provides a basis for applying prosthetic hands in a water environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七九完成签到,获得积分10
1秒前
从容芮应助夕荀采纳,获得20
3秒前
陈元元K完成签到,获得积分10
4秒前
南南关注了科研通微信公众号
5秒前
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
脑洞疼应助爱唱歌的yu仔采纳,获得10
6秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
从容芮应助科研通管家采纳,获得10
7秒前
从容芮应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
华仔应助彭医生采纳,获得10
7秒前
fsznc完成签到 ,获得积分0
8秒前
8秒前
9秒前
Sylvia完成签到,获得积分10
9秒前
贪青熊发布了新的文献求助20
9秒前
传奇3应助今硕真采纳,获得10
10秒前
今天发文章了吗完成签到 ,获得积分10
12秒前
12秒前
星魂发布了新的文献求助10
12秒前
木风2023完成签到,获得积分10
12秒前
amber发布了新的文献求助10
12秒前
dasheng发布了新的文献求助10
12秒前
王者归来完成签到,获得积分10
13秒前
李健的小迷弟应助Lin采纳,获得10
17秒前
18秒前
Zhang发布了新的文献求助10
19秒前
19秒前
Ava应助宝宝慧儿7采纳,获得10
20秒前
打打应助生工跑路ing采纳,获得10
21秒前
dasheng完成签到,获得积分10
21秒前
xiaoma发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150133
求助须知:如何正确求助?哪些是违规求助? 2801290
关于积分的说明 7843877
捐赠科研通 2458770
什么是DOI,文献DOI怎么找? 1308652
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721