Underwater sEMG-based recognition of hand gestures using tensor decomposition

水下 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 特征提取 信号(编程语言) 手势 特征(语言学) 语音识别 计算机视觉 地质学 哲学 程序设计语言 图像(数学) 海洋学 语言学
作者
Jianing Xue,Zhe Sun,Feng Duan,César F. Caiafa,Jordi Solé-Casals
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:165: 39-46
标识
DOI:10.1016/j.patrec.2022.11.021
摘要

Amputees have limited ability to complete specific movements because of the loss of hands. Prosthetic hands can help amputees as an effective human-computer interaction system in their daily lives, and some amputees need to use the prosthetic hands for underwater operations. Therefore, it is necessary to solve the problem of using prosthetic hands underwater. There are two main problems in underwater surface Electromyogram (sEMG) signal recognition. The underwater sEMG signals are disturbed by noise, and the traditional sEMG features are easily affected by noise, decreasing the recognition accuracy of underwater sEMG signals. It is difficult for subjects to acquire quantity training data underwater, and satisfactory sEMG recognition accuracy needs to be obtained based on small datasets. Tensor decomposition has the advantage of finding potential features of signals, and it is widely used in many fields. Tucker tensor decomposition was used for feature extraction and recognition of underwater sEMG signals. Seven subjects were selected to complete four hand gestures underwater and two-channel sEMG signals were collected. Wavelet transform was applied to generate a three-dimensional tensor and extracted signal features by tensor decomposition. The recognition accuracy based on K-Nearest Neighbor reaches 96.43%. The results show that the proposed sEMG feature extraction method based on tensor decomposition helps improve the recognition accuracy of underwater sEMG signals, which provides a basis for applying prosthetic hands in a water environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红与黑完成签到,获得积分10
刚刚
darkpigx完成签到,获得积分10
刚刚
眼睛大初瑶完成签到,获得积分10
刚刚
1秒前
Ava应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
彩色的誉完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Painkiller_完成签到,获得积分10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得20
1秒前
科研通AI5应助灯灯采纳,获得10
1秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
学术小白完成签到 ,获得积分10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
panpan111完成签到,获得积分10
2秒前
shhoing应助科研通管家采纳,获得10
2秒前
shhoing应助科研通管家采纳,获得10
2秒前
Vita应助科研通管家采纳,获得10
2秒前
momo完成签到,获得积分10
2秒前
3秒前
小星星bulingbuling完成签到,获得积分0
3秒前
汪强发布了新的文献求助10
3秒前
橄榄囚徒完成签到 ,获得积分0
4秒前
songyl完成签到,获得积分10
4秒前
闻巷雨完成签到 ,获得积分10
5秒前
126完成签到,获得积分10
5秒前
Junewill完成签到,获得积分10
6秒前
6秒前
月月鸟完成签到 ,获得积分10
6秒前
ALinaLi完成签到,获得积分10
6秒前
7秒前
楠兮完成签到,获得积分10
7秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598273
求助须知:如何正确求助?哪些是违规求助? 4009452
关于积分的说明 12411277
捐赠科研通 3688841
什么是DOI,文献DOI怎么找? 2033499
邀请新用户注册赠送积分活动 1066749
科研通“疑难数据库(出版商)”最低求助积分说明 951856