Underwater sEMG-based recognition of hand gestures using tensor decomposition

水下 计算机科学 人工智能 模式识别(心理学) 噪音(视频) 特征提取 信号(编程语言) 手势 特征(语言学) 语音识别 计算机视觉 地质学 哲学 程序设计语言 图像(数学) 海洋学 语言学
作者
Jianing Xue,Zhe Sun,Feng Duan,César F. Caiafa,Jordi Solé-Casals
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:165: 39-46
标识
DOI:10.1016/j.patrec.2022.11.021
摘要

Amputees have limited ability to complete specific movements because of the loss of hands. Prosthetic hands can help amputees as an effective human-computer interaction system in their daily lives, and some amputees need to use the prosthetic hands for underwater operations. Therefore, it is necessary to solve the problem of using prosthetic hands underwater. There are two main problems in underwater surface Electromyogram (sEMG) signal recognition. The underwater sEMG signals are disturbed by noise, and the traditional sEMG features are easily affected by noise, decreasing the recognition accuracy of underwater sEMG signals. It is difficult for subjects to acquire quantity training data underwater, and satisfactory sEMG recognition accuracy needs to be obtained based on small datasets. Tensor decomposition has the advantage of finding potential features of signals, and it is widely used in many fields. Tucker tensor decomposition was used for feature extraction and recognition of underwater sEMG signals. Seven subjects were selected to complete four hand gestures underwater and two-channel sEMG signals were collected. Wavelet transform was applied to generate a three-dimensional tensor and extracted signal features by tensor decomposition. The recognition accuracy based on K-Nearest Neighbor reaches 96.43%. The results show that the proposed sEMG feature extraction method based on tensor decomposition helps improve the recognition accuracy of underwater sEMG signals, which provides a basis for applying prosthetic hands in a water environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
塞西尔完成签到,获得积分10
刚刚
杜若完成签到,获得积分20
刚刚
1秒前
tingalan发布了新的文献求助10
1秒前
Dasph7完成签到,获得积分10
1秒前
郑郑完成签到,获得积分20
1秒前
无花果应助陆吉采纳,获得20
2秒前
2秒前
单纯威完成签到,获得积分10
2秒前
iNk应助好想睡觉采纳,获得20
2秒前
无辜的秀完成签到,获得积分10
2秒前
3秒前
激情的代曼完成签到,获得积分10
3秒前
酸辣完成签到 ,获得积分10
3秒前
4秒前
4秒前
miao完成签到,获得积分10
4秒前
乐乐应助自然采纳,获得10
4秒前
5秒前
5秒前
orchid完成签到,获得积分10
5秒前
清爽问夏发布了新的文献求助10
5秒前
蔺文博完成签到,获得积分10
6秒前
无辜的秀发布了新的文献求助10
6秒前
黑龙哥发布了新的文献求助10
6秒前
lipppfff发布了新的文献求助10
7秒前
7秒前
7秒前
lw完成签到 ,获得积分10
7秒前
打打应助yxsh采纳,获得100
7秒前
Migrol完成签到,获得积分10
7秒前
8秒前
8秒前
orange完成签到,获得积分10
8秒前
cheng4046完成签到,获得积分10
9秒前
10秒前
闪闪晓绿发布了新的文献求助10
10秒前
小白完成签到,获得积分10
10秒前
xh完成签到,获得积分10
10秒前
遐蝶发布了新的文献求助30
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904