亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel approach to estimate land surface temperature from landsat top-of-atmosphere reflective and emissive data using transfer-learning neural network

大气(单位) 人工神经网络 环境科学 学习迁移 遥感 曲面(拓扑) 传输(计算) 气象学 大气科学 计算机科学 地质学 地理 人工智能 数学 几何学 并行计算
作者
Shuo Xu,Dongdong Wang,Shunlin Liang,Aolin Jia,Ruohan Li,Zhihao Wang,Yuling Liu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 176783-176783 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.176783
摘要

Land Surface Temperature (LST) is a crucial parameter in studies of urban heat islands, climate change, evapotranspiration, hydrological cycles, and vegetation monitoring. However, conventional satellite-based approaches for LST retrieval often require additional data like land surface emissivity (LSE). Meanwhile, traditional machine learning (ML) techniques face challenges in acquiring representative training data and leveraging data from varied sources effectively. To address these issues, we introduce a novel transfer-learning (TL) neural network approach for LST retrieval using top-of-atmosphere (TOA) reflective and emissive data from Landsat. This method not only improves LST retrieval by integrating various data types but also demonstrates the potential of shortwave data in surrogating LSE information, thereby reducing dependence on explicit LSE data. Our TL approach utilized extensive simulations from the radiative transfer model (RTM) and measurements from the real world. The simulations are comprehensive, covering a wide range of atmospheric and surface scenarios, and the inclusion of real-world data mitigates the discrepancy between simulations and actual observations. When applied to a decade of Landsat-8 observations and ground measurements from 241 stations across diverse regions, our TL method significantly outperforms ML, single-channel (SC), and split-window (SW) algorithms in terms of root mean square error (RMSE), with improvements of 0.46 K, 0.84 K, and 0.57 K, respectively. This superiority underscores the advantage of integrating simulated and observed data, as well as the benefit of utilizing both reflective and emissive data without relying on uncertain LSE inputs. Our findings present a promising new TL framework for estimating LST directly from TOA data, offering a robust approach that we have made publicly available through Google Earth Engine (GEE) for broader use. The LST data retrieved by our proposed method can provide valuable insights for environmental research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TEMPO完成签到,获得积分10
13秒前
17秒前
TEMPO发布了新的文献求助10
18秒前
34秒前
40秒前
yf发布了新的文献求助10
43秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
mrjohn完成签到,获得积分0
1分钟前
LIFE2020完成签到 ,获得积分10
1分钟前
1分钟前
Arain456发布了新的文献求助10
1分钟前
1分钟前
HC发布了新的文献求助10
1分钟前
hu完成签到 ,获得积分10
1分钟前
科研通AI6应助HC采纳,获得10
1分钟前
2分钟前
HC完成签到,获得积分10
2分钟前
汉堡包应助hu采纳,获得10
2分钟前
fuxiu完成签到,获得积分10
2分钟前
佳佳发布了新的文献求助10
2分钟前
隐形曼青应助佳佳采纳,获得10
2分钟前
从来都不会放弃zr完成签到,获得积分0
2分钟前
3分钟前
佳佳发布了新的文献求助10
3分钟前
lalala完成签到,获得积分10
3分钟前
3分钟前
Akim应助佳佳采纳,获得10
3分钟前
gaogaogao完成签到,获得积分10
3分钟前
3分钟前
Said1223发布了新的文献求助10
4分钟前
4分钟前
wubizilv发布了新的文献求助10
4分钟前
Lucas应助Said1223采纳,获得10
4分钟前
4分钟前
4分钟前
科研通AI6应助大力不评采纳,获得10
4分钟前
5分钟前
NattyPoe应助科研通管家采纳,获得10
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651010
求助须知:如何正确求助?哪些是违规求助? 4782702
关于积分的说明 15052953
捐赠科研通 4809790
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528597
关于科研通互助平台的介绍 1487601