A novel approach to estimate land surface temperature from landsat top-of-atmosphere reflective and emissive data using transfer-learning neural network

大气(单位) 人工神经网络 环境科学 学习迁移 遥感 曲面(拓扑) 传输(计算) 气象学 大气科学 计算机科学 地质学 地理 人工智能 数学 几何学 并行计算
作者
Shuo Xu,Dongdong Wang,Shunlin Liang,Aolin Jia,Ruohan Li,Zhihao Wang,Yuling Liu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 176783-176783
标识
DOI:10.1016/j.scitotenv.2024.176783
摘要

Land Surface Temperature (LST) is a crucial parameter in studies of urban heat islands, climate change, evapotranspiration, hydrological cycles, and vegetation monitoring. However, conventional satellite-based approaches for LST retrieval often require additional data like land surface emissivity (LSE). Meanwhile, traditional machine learning (ML) techniques face challenges in acquiring representative training data and leveraging data from varied sources effectively. To address these issues, we introduce a novel transfer-learning (TL) neural network approach for LST retrieval using top-of-atmosphere (TOA) reflective and emissive data from Landsat. This method not only improves LST retrieval by integrating various data types but also demonstrates the potential of shortwave data in surrogating LSE information, thereby reducing dependence on explicit LSE data. Our TL approach utilized extensive simulations from the radiative transfer model (RTM) and measurements from the real world. The simulations are comprehensive, covering a wide range of atmospheric and surface scenarios, and the inclusion of real-world data mitigates the discrepancy between simulations and actual observations. When applied to a decade of Landsat-8 observations and ground measurements from 241 stations across diverse regions, our TL method significantly outperforms ML, single-channel (SC), and split-window (SW) algorithms in terms of root mean square error (RMSE), with improvements of 0.46 K, 0.84 K, and 0.57 K, respectively. This superiority underscores the advantage of integrating simulated and observed data, as well as the benefit of utilizing both reflective and emissive data without relying on uncertain LSE inputs. Our findings present a promising new TL framework for estimating LST directly from TOA data, offering a robust approach that we have made publicly available through Google Earth Engine (GEE) for broader use. The LST data retrieved by our proposed method can provide valuable insights for environmental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
称心鸵鸟完成签到,获得积分10
2秒前
3秒前
呆萌水壶完成签到 ,获得积分10
3秒前
chengs完成签到,获得积分10
4秒前
羊白玉完成签到 ,获得积分10
4秒前
研友_gnv61n完成签到,获得积分10
4秒前
5秒前
5秒前
思源应助nhscyhy采纳,获得10
5秒前
wking应助nhscyhy采纳,获得10
5秒前
sll完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
gogozoco完成签到,获得积分10
6秒前
Bioc发布了新的文献求助10
6秒前
耶耶喵喵完成签到 ,获得积分10
7秒前
7秒前
7秒前
lalala完成签到,获得积分10
7秒前
轻松的冥王星完成签到,获得积分10
7秒前
卿醉孤影完成签到,获得积分10
8秒前
8秒前
sll发布了新的文献求助10
8秒前
lalaland完成签到,获得积分10
8秒前
星星发布了新的文献求助10
8秒前
何博洋完成签到,获得积分10
9秒前
xiaozhuzhu发布了新的文献求助10
9秒前
包子完成签到,获得积分10
9秒前
圆彰七大发布了新的文献求助10
9秒前
chl发布了新的文献求助10
10秒前
10秒前
Inter09完成签到,获得积分10
10秒前
10秒前
10秒前
Achoes完成签到,获得积分10
11秒前
12秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159124
求助须知:如何正确求助?哪些是违规求助? 2810283
关于积分的说明 7887027
捐赠科研通 2469127
什么是DOI,文献DOI怎么找? 1314668
科研通“疑难数据库(出版商)”最低求助积分说明 630671
版权声明 602012