A novel approach to estimate land surface temperature from landsat top-of-atmosphere reflective and emissive data using transfer-learning neural network

大气(单位) 人工神经网络 环境科学 学习迁移 遥感 曲面(拓扑) 传输(计算) 气象学 大气科学 计算机科学 地质学 地理 人工智能 数学 几何学 并行计算
作者
Shuo Xu,Dongdong Wang,Shunlin Liang,Aolin Jia,Ruohan Li,Zhihao Wang,Yuling Liu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 176783-176783
标识
DOI:10.1016/j.scitotenv.2024.176783
摘要

Land Surface Temperature (LST) is a crucial parameter in studies of urban heat islands, climate change, evapotranspiration, hydrological cycles, and vegetation monitoring. However, conventional satellite-based approaches for LST retrieval often require additional data like land surface emissivity (LSE). Meanwhile, traditional machine learning (ML) techniques face challenges in acquiring representative training data and leveraging data from varied sources effectively. To address these issues, we introduce a novel transfer-learning (TL) neural network approach for LST retrieval using top-of-atmosphere (TOA) reflective and emissive data from Landsat. This method not only improves LST retrieval by integrating various data types but also demonstrates the potential of shortwave data in surrogating LSE information, thereby reducing dependence on explicit LSE data. Our TL approach utilized extensive simulations from the radiative transfer model (RTM) and measurements from the real world. The simulations are comprehensive, covering a wide range of atmospheric and surface scenarios, and the inclusion of real-world data mitigates the discrepancy between simulations and actual observations. When applied to a decade of Landsat-8 observations and ground measurements from 241 stations across diverse regions, our TL method significantly outperforms ML, single-channel (SC), and split-window (SW) algorithms in terms of root mean square error (RMSE), with improvements of 0.46 K, 0.84 K, and 0.57 K, respectively. This superiority underscores the advantage of integrating simulated and observed data, as well as the benefit of utilizing both reflective and emissive data without relying on uncertain LSE inputs. Our findings present a promising new TL framework for estimating LST directly from TOA data, offering a robust approach that we have made publicly available through Google Earth Engine (GEE) for broader use. The LST data retrieved by our proposed method can provide valuable insights for environmental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助健壮的怜烟采纳,获得10
1秒前
帅帅厅完成签到 ,获得积分10
3秒前
小不溜完成签到 ,获得积分10
4秒前
ssssss完成签到,获得积分10
4秒前
5秒前
7秒前
核动力驴完成签到,获得积分10
7秒前
KOBE94FU完成签到,获得积分10
8秒前
coolkid完成签到 ,获得积分10
8秒前
由大发布了新的文献求助10
10秒前
LGL发布了新的文献求助10
10秒前
lcubiozy完成签到,获得积分10
10秒前
12秒前
14秒前
labordoc完成签到,获得积分10
14秒前
Nola完成签到 ,获得积分10
14秒前
15秒前
lgold完成签到,获得积分10
17秒前
沉默的小耳朵完成签到 ,获得积分10
17秒前
Layace发布了新的文献求助10
19秒前
聪慧的娜完成签到 ,获得积分10
20秒前
21秒前
梅梅王发布了新的文献求助10
21秒前
怕黑的觅荷完成签到 ,获得积分10
21秒前
22秒前
22秒前
温暖的广缘完成签到 ,获得积分10
23秒前
隐形铃铛发布了新的文献求助10
25秒前
zhang完成签到,获得积分10
25秒前
CC发布了新的文献求助10
26秒前
26秒前
迟山完成签到 ,获得积分10
27秒前
星河在眼里完成签到,获得积分10
27秒前
28秒前
28秒前
喵喵7完成签到 ,获得积分10
29秒前
ZY完成签到 ,获得积分10
30秒前
我爱科研完成签到,获得积分10
30秒前
科研通AI5应助123456采纳,获得10
31秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761129
求助须知:如何正确求助?哪些是违规求助? 3305049
关于积分的说明 10132066
捐赠科研通 3019064
什么是DOI,文献DOI怎么找? 1657959
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604