A novel approach to estimate land surface temperature from landsat top-of-atmosphere reflective and emissive data using transfer-learning neural network

大气(单位) 人工神经网络 环境科学 学习迁移 遥感 曲面(拓扑) 传输(计算) 气象学 大气科学 计算机科学 地质学 地理 人工智能 数学 几何学 并行计算
作者
Shuo Xu,Dongdong Wang,Shunlin Liang,Aolin Jia,Ruohan Li,Zhihao Wang,Yuling Liu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 176783-176783 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.176783
摘要

Land Surface Temperature (LST) is a crucial parameter in studies of urban heat islands, climate change, evapotranspiration, hydrological cycles, and vegetation monitoring. However, conventional satellite-based approaches for LST retrieval often require additional data like land surface emissivity (LSE). Meanwhile, traditional machine learning (ML) techniques face challenges in acquiring representative training data and leveraging data from varied sources effectively. To address these issues, we introduce a novel transfer-learning (TL) neural network approach for LST retrieval using top-of-atmosphere (TOA) reflective and emissive data from Landsat. This method not only improves LST retrieval by integrating various data types but also demonstrates the potential of shortwave data in surrogating LSE information, thereby reducing dependence on explicit LSE data. Our TL approach utilized extensive simulations from the radiative transfer model (RTM) and measurements from the real world. The simulations are comprehensive, covering a wide range of atmospheric and surface scenarios, and the inclusion of real-world data mitigates the discrepancy between simulations and actual observations. When applied to a decade of Landsat-8 observations and ground measurements from 241 stations across diverse regions, our TL method significantly outperforms ML, single-channel (SC), and split-window (SW) algorithms in terms of root mean square error (RMSE), with improvements of 0.46 K, 0.84 K, and 0.57 K, respectively. This superiority underscores the advantage of integrating simulated and observed data, as well as the benefit of utilizing both reflective and emissive data without relying on uncertain LSE inputs. Our findings present a promising new TL framework for estimating LST directly from TOA data, offering a robust approach that we have made publicly available through Google Earth Engine (GEE) for broader use. The LST data retrieved by our proposed method can provide valuable insights for environmental research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
michael发布了新的文献求助10
刚刚
1秒前
胡胡完成签到 ,获得积分10
4秒前
yanyan123完成签到,获得积分10
4秒前
隐形元绿发布了新的文献求助10
5秒前
yyy完成签到,获得积分10
5秒前
weirdo完成签到,获得积分10
5秒前
55555完成签到,获得积分10
5秒前
6秒前
小徐801完成签到,获得积分10
7秒前
CQMZY_2025完成签到,获得积分10
8秒前
闫恒发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
害羞映容发布了新的文献求助10
9秒前
啦啦啦完成签到,获得积分10
9秒前
忧郁的凝竹完成签到,获得积分20
11秒前
香蕉鼠标完成签到 ,获得积分10
11秒前
柳七发布了新的文献求助10
12秒前
麦子完成签到 ,获得积分10
12秒前
13秒前
慕青应助薛喜康采纳,获得30
14秒前
充电宝应助michael采纳,获得10
15秒前
细腻小蜜蜂完成签到,获得积分10
16秒前
planb发布了新的文献求助10
16秒前
kai完成签到,获得积分10
17秒前
18秒前
18秒前
子建发布了新的文献求助10
19秒前
yusi应助大大采纳,获得10
19秒前
20秒前
牛奶糖完成签到,获得积分10
20秒前
21秒前
21秒前
koe发布了新的文献求助10
21秒前
22秒前
brick发布了新的文献求助10
22秒前
农艳宁发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370