A novel approach to estimate land surface temperature from landsat top-of-atmosphere reflective and emissive data using transfer-learning neural network

大气(单位) 人工神经网络 环境科学 学习迁移 遥感 曲面(拓扑) 传输(计算) 气象学 大气科学 计算机科学 地质学 地理 人工智能 数学 几何学 并行计算
作者
Shuo Xu,Dongdong Wang,Shunlin Liang,Aolin Jia,Ruohan Li,Zhihao Wang,Yuling Liu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 176783-176783
标识
DOI:10.1016/j.scitotenv.2024.176783
摘要

Land Surface Temperature (LST) is a crucial parameter in studies of urban heat islands, climate change, evapotranspiration, hydrological cycles, and vegetation monitoring. However, conventional satellite-based approaches for LST retrieval often require additional data like land surface emissivity (LSE). Meanwhile, traditional machine learning (ML) techniques face challenges in acquiring representative training data and leveraging data from varied sources effectively. To address these issues, we introduce a novel transfer-learning (TL) neural network approach for LST retrieval using top-of-atmosphere (TOA) reflective and emissive data from Landsat. This method not only improves LST retrieval by integrating various data types but also demonstrates the potential of shortwave data in surrogating LSE information, thereby reducing dependence on explicit LSE data. Our TL approach utilized extensive simulations from the radiative transfer model (RTM) and measurements from the real world. The simulations are comprehensive, covering a wide range of atmospheric and surface scenarios, and the inclusion of real-world data mitigates the discrepancy between simulations and actual observations. When applied to a decade of Landsat-8 observations and ground measurements from 241 stations across diverse regions, our TL method significantly outperforms ML, single-channel (SC), and split-window (SW) algorithms in terms of root mean square error (RMSE), with improvements of 0.46 K, 0.84 K, and 0.57 K, respectively. This superiority underscores the advantage of integrating simulated and observed data, as well as the benefit of utilizing both reflective and emissive data without relying on uncertain LSE inputs. Our findings present a promising new TL framework for estimating LST directly from TOA data, offering a robust approach that we have made publicly available through Google Earth Engine (GEE) for broader use. The LST data retrieved by our proposed method can provide valuable insights for environmental research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助zzk采纳,获得10
2秒前
陈有权发布了新的文献求助10
3秒前
charlotte3228完成签到,获得积分20
3秒前
gaowei完成签到,获得积分10
7秒前
钇铯完成签到,获得积分10
8秒前
9秒前
10秒前
慕青应助等等采纳,获得10
10秒前
wmuer完成签到 ,获得积分10
11秒前
tiomooo发布了新的文献求助10
11秒前
陈有权完成签到,获得积分10
11秒前
xs发布了新的文献求助10
12秒前
13秒前
C_Li完成签到,获得积分10
13秒前
youngx完成签到,获得积分20
13秒前
14秒前
zzk发布了新的文献求助10
16秒前
lin完成签到,获得积分10
16秒前
Genevieve_T关注了科研通微信公众号
17秒前
zhangnan发布了新的文献求助10
20秒前
20秒前
xs完成签到,获得积分10
21秒前
22秒前
情怀应助甜甜季吟采纳,获得10
23秒前
zzk完成签到,获得积分20
25秒前
长情立诚发布了新的文献求助10
25秒前
26秒前
26秒前
30秒前
NN大可爱发布了新的文献求助10
31秒前
31秒前
诚心绝悟完成签到,获得积分10
32秒前
33秒前
要减肥的鸭胗完成签到,获得积分10
36秒前
36秒前
科目三应助AYu采纳,获得10
37秒前
39秒前
40秒前
41秒前
斯文败类应助1111采纳,获得10
42秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685