A novel approach to estimate land surface temperature from landsat top-of-atmosphere reflective and emissive data using transfer-learning neural network

大气(单位) 人工神经网络 环境科学 学习迁移 遥感 曲面(拓扑) 传输(计算) 气象学 大气科学 计算机科学 地质学 地理 人工智能 数学 几何学 并行计算
作者
Shuo Xu,Dongdong Wang,Shunlin Liang,Aolin Jia,Ruohan Li,Zhihao Wang,Yuling Liu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:: 176783-176783 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.176783
摘要

Land Surface Temperature (LST) is a crucial parameter in studies of urban heat islands, climate change, evapotranspiration, hydrological cycles, and vegetation monitoring. However, conventional satellite-based approaches for LST retrieval often require additional data like land surface emissivity (LSE). Meanwhile, traditional machine learning (ML) techniques face challenges in acquiring representative training data and leveraging data from varied sources effectively. To address these issues, we introduce a novel transfer-learning (TL) neural network approach for LST retrieval using top-of-atmosphere (TOA) reflective and emissive data from Landsat. This method not only improves LST retrieval by integrating various data types but also demonstrates the potential of shortwave data in surrogating LSE information, thereby reducing dependence on explicit LSE data. Our TL approach utilized extensive simulations from the radiative transfer model (RTM) and measurements from the real world. The simulations are comprehensive, covering a wide range of atmospheric and surface scenarios, and the inclusion of real-world data mitigates the discrepancy between simulations and actual observations. When applied to a decade of Landsat-8 observations and ground measurements from 241 stations across diverse regions, our TL method significantly outperforms ML, single-channel (SC), and split-window (SW) algorithms in terms of root mean square error (RMSE), with improvements of 0.46 K, 0.84 K, and 0.57 K, respectively. This superiority underscores the advantage of integrating simulated and observed data, as well as the benefit of utilizing both reflective and emissive data without relying on uncertain LSE inputs. Our findings present a promising new TL framework for estimating LST directly from TOA data, offering a robust approach that we have made publicly available through Google Earth Engine (GEE) for broader use. The LST data retrieved by our proposed method can provide valuable insights for environmental research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁梦阳发布了新的文献求助10
刚刚
1秒前
1秒前
所所应助1111采纳,获得10
1秒前
今后应助椰子采纳,获得10
2秒前
LYW应助ll采纳,获得10
2秒前
dild完成签到,获得积分10
3秒前
4秒前
Jasper应助飞飞采纳,获得10
4秒前
5秒前
荣昱凤完成签到,获得积分10
5秒前
7秒前
8秒前
缓慢念云完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
科研通AI6应助G_Y采纳,获得30
10秒前
10秒前
11秒前
11秒前
zxzxzxzxzx发布了新的文献求助10
12秒前
领导范儿应助野性的孤菱采纳,获得10
12秒前
阳光发布了新的文献求助10
13秒前
13秒前
14秒前
xiaoling发布了新的文献求助10
14秒前
小蘑菇应助nana湘采纳,获得10
14秒前
14秒前
bkagyin应助彤彤采纳,获得10
15秒前
烟花应助兰知珩采纳,获得10
15秒前
诗酒发布了新的文献求助10
16秒前
16秒前
zxzxzxzxzx完成签到,获得积分10
17秒前
金开发布了新的文献求助10
17秒前
希望天下0贩的0应助门意采纳,获得10
17秒前
奋斗哈基米完成签到,获得积分10
17秒前
coloy完成签到,获得积分10
18秒前
河鲸发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589341
求助须知:如何正确求助?哪些是违规求助? 4674104
关于积分的说明 14791759
捐赠科研通 4628240
什么是DOI,文献DOI怎么找? 2532262
邀请新用户注册赠送积分活动 1500881
关于科研通互助平台的介绍 1468438