已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Federated learning-based prediction of depression among adolescents across multiple districts in China

萧条(经济学) 中国 心理学 临床心理学 地理 考古 经济 宏观经济学
作者
Yalan Kuang,Liao Xiao,Zekun Jiang,Yonghong Gu,Bo Liu,Chaowei Tan,Wei Zhang,Shuo Li
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:369: 625-632
标识
DOI:10.1016/j.jad.2024.10.027
摘要

Depression in adolescents is a serious mental health condition that can affect their emotional and social well-being. Detailed understanding of depression patterns and status of depressive symptoms in adolescents could help identify early intervention targets. Despite the growing use of artificial intelligence for diagnosis and prediction of mental health conditions, the traditional centralized machine learning methods require aggregating adolescents' data; this raises concerns about confidentiality and privacy, which hampers the clinical application of machine learning algorithms. In this study, we use federated learning to solve those problems. We included 583,405 middle and high school adolescents from 20 districts in Chengdu China, and collected from three aspects: individuals, families, and schools, containing 11 psychological phenomena to evaluate the status of depressive symptoms. We compared federated and local training frameworks; the results showed the area under the receiver operating characteristic curve for depression increased by up to 20 % (from 0.7544 with local training to 0.9064 with federated training). Moreover, based on the best-performing model, the XGBoost model, we explore the data heterogeneity in federated learning and found that stress, student burnout, and social connection were the three most important predictors of depression symptoms. We then assessed the impact of each subdimension of depression symptoms, results show that sleep was the most impact one which may provide clues to predict depression symptoms in early stage and improve control and prevention efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形双双完成签到,获得积分10
1秒前
东方天奇发布了新的文献求助10
3秒前
3秒前
科目三应助pgg采纳,获得10
5秒前
slyhhk完成签到 ,获得积分10
8秒前
8秒前
鸿儒完成签到,获得积分10
8秒前
12秒前
菜菜发布了新的文献求助10
14秒前
菜虫虫发布了新的文献求助10
15秒前
东东完成签到 ,获得积分10
16秒前
香蕉觅云应助我爱蓝胖子采纳,获得10
17秒前
xzy998应助菜菜采纳,获得10
21秒前
21秒前
Solomon完成签到 ,获得积分0
24秒前
阿君发布了新的文献求助10
26秒前
27秒前
okk发布了新的文献求助10
27秒前
囿于昼夜完成签到,获得积分10
28秒前
28秒前
29秒前
32秒前
36秒前
沐沐心完成签到 ,获得积分10
36秒前
我的苞娜公主完成签到,获得积分10
39秒前
852应助孤独靖柏采纳,获得10
41秒前
斯文败类应助大力的无声采纳,获得10
41秒前
我爱蓝胖子完成签到,获得积分10
44秒前
华仔应助科研通管家采纳,获得10
44秒前
Ava应助科研通管家采纳,获得30
44秒前
大模型应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
ff应助科研通管家采纳,获得10
45秒前
45秒前
笨笨西牛完成签到 ,获得积分10
46秒前
47秒前
47秒前
49秒前
隐形曼青应助鸿儒采纳,获得10
50秒前
于雷是我发布了新的文献求助10
52秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314227
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530722
捐赠科研通 2622271
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838