Identification of Origin for Spinal Metastases from MR Images: Comparison Between Radiomics and Deep Learning Methods

医学 无线电技术 鉴定(生物学) 深度学习 放射科 脊柱肿瘤 磁共振成像 人工智能 生物 计算机科学 植物
作者
Shuo Duan,Guanmei Cao,Yichun Hua,Jun‐nan Hu,Yali Zheng,Fangfang Wu,Shuai Xu,Tianhua Rong,Baoge Liu
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:175: e823-e831 被引量:3
标识
DOI:10.1016/j.wneu.2023.04.029
摘要

To determine whether spinal metastatic lesions originated from lung cancer or from other cancers based on spinal contrast-enhanced T1 (CET1) magnetic resonance (MR) images analyzed using radiomics (RAD) and deep learning (DL) methods.We recruited and retrospectively reviewed 173 patients diagnosed with spinal metastases at two different centers between July 2018 and June 2021. Of these, 68 involved lung cancer and 105 were other types of cancer. They were assigned to an internal cohort of 149 patients, randomly divided into a training set and a validation set, and to an external cohort of 24 patients. All patients underwent CET1-MR imaging before surgery or biopsy. We developed two predictive algorithms: a DL model and a RAD model. We compared performance between models, and against human radiological assessment, via accuracy (ACC) and receiver operating characteristic (ROC) analyses. Furthermore, we analyzed the correlation between RAD and DL features.The DL model outperformed RAD model across the board, with ACC/ area under the receiver operating characteristic curve (AUC) values of 0.93/0.94 (DL) versus 0.84/0.93 (RAD) when applied to the training set from the internal cohort, 0.74/0.76 versus 0.72/0.75 when applied to the validation set, and 0.72/0.76 versus 0.69/0.72 when applied to the external test cohort. For the validation set, it also outperformed expert radiological assessment (ACC: 0.65, AUC: 0.68). We only found weak correlations between DL and RAD features.The DL algorithm successfully identified the origin of spinal metastases from pre-operative CET1-MR images, outperforming both RAD models and expert assessment by trained radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qaa2274278941完成签到,获得积分10
刚刚
xiaomi完成签到,获得积分10
1秒前
1秒前
1秒前
小马甲应助kekeli采纳,获得30
2秒前
3秒前
爆米花应助重要的小丸子采纳,获得10
3秒前
大模型应助寒霁采纳,获得10
3秒前
科研通AI2S应助AixGnad采纳,获得10
4秒前
万能图书馆应助昂口3采纳,获得10
4秒前
4秒前
4秒前
ltt发布了新的文献求助10
4秒前
pd发布了新的文献求助20
5秒前
困芃发布了新的文献求助10
5秒前
隐形曼青应助好好好采纳,获得10
6秒前
充电宝应助river_121采纳,获得10
6秒前
7秒前
李涛涛发布了新的文献求助10
7秒前
风趣的飞荷完成签到,获得积分10
7秒前
lina发布了新的文献求助10
8秒前
年轻的冷雁完成签到,获得积分10
8秒前
希望天下0贩的0应助Hudson采纳,获得10
8秒前
白石杏完成签到,获得积分10
9秒前
万能图书馆应助hannah采纳,获得10
9秒前
luna发布了新的文献求助10
10秒前
qaz完成签到,获得积分10
11秒前
ED应助帅气的猫采纳,获得10
11秒前
俭朴映阳发布了新的文献求助10
11秒前
11秒前
12秒前
单纯的亦云完成签到,获得积分20
12秒前
12秒前
SYLH应助FLZLC采纳,获得10
12秒前
内坻崿完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288