Identification of Origin for Spinal Metastases from MR Images: Comparison Between Radiomics and Deep Learning Methods

医学 无线电技术 队列 接收机工作特性 放射科 磁共振成像 回顾性队列研究 肺癌 核医学 外科 内科学
作者
Shuo Duan,Guanmei Cao,Yichun Hua,Jun-Nan Hu,Yongjun Zheng,Fangfang Wu,Shilang Xu,Tianhua Rong,Baoge Liu
出处
期刊:World Neurosurgery [Elsevier]
卷期号:175: e823-e831 被引量:1
标识
DOI:10.1016/j.wneu.2023.04.029
摘要

To determine whether spinal metastatic lesions originated from lung cancer or from other cancers based on spinal contrast-enhanced T1 (CET1) magnetic resonance (MR) images analyzed using radiomics (RAD) and deep learning (DL) methods.We recruited and retrospectively reviewed 173 patients diagnosed with spinal metastases at two different centers between July 2018 and June 2021. Of these, 68 involved lung cancer and 105 were other types of cancer. They were assigned to an internal cohort of 149 patients, randomly divided into a training set and a validation set, and to an external cohort of 24 patients. All patients underwent CET1-MR imaging before surgery or biopsy. We developed two predictive algorithms: a DL model and a RAD model. We compared performance between models, and against human radiological assessment, via accuracy (ACC) and receiver operating characteristic (ROC) analyses. Furthermore, we analyzed the correlation between RAD and DL features.The DL model outperformed RAD model across the board, with ACC/ area under the receiver operating characteristic curve (AUC) values of 0.93/0.94 (DL) versus 0.84/0.93 (RAD) when applied to the training set from the internal cohort, 0.74/0.76 versus 0.72/0.75 when applied to the validation set, and 0.72/0.76 versus 0.69/0.72 when applied to the external test cohort. For the validation set, it also outperformed expert radiological assessment (ACC: 0.65, AUC: 0.68). We only found weak correlations between DL and RAD features.The DL algorithm successfully identified the origin of spinal metastases from pre-operative CET1-MR images, outperforming both RAD models and expert assessment by trained radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
英姑应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
杨等等应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得30
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得30
4秒前
Ava应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
wwz应助科研通管家采纳,获得10
4秒前
4秒前
美好乐松应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
小马甲应助单纯面包采纳,获得10
5秒前
5秒前
爱学习完成签到,获得积分10
5秒前
清脆代桃完成签到 ,获得积分10
8秒前
9秒前
禾盒完成签到,获得积分10
10秒前
gxl完成签到,获得积分10
10秒前
wanci应助NJY采纳,获得10
11秒前
12秒前
Nicole发布了新的文献求助10
13秒前
肝帝完成签到,获得积分10
14秒前
共享精神应助老迟的新瑶采纳,获得10
14秒前
搜集达人应助Ijaz采纳,获得10
15秒前
alho完成签到 ,获得积分10
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023