Identification of Origin for Spinal Metastases from MR Images: Comparison Between Radiomics and Deep Learning Methods

医学 无线电技术 鉴定(生物学) 深度学习 放射科 脊柱肿瘤 磁共振成像 人工智能 生物 计算机科学 植物
作者
Shuo Duan,Guanmei Cao,Yichun Hua,Jun‐nan Hu,Yali Zheng,Fangfang Wu,Shuai Xu,Tianhua Rong,Baoge Liu
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:175: e823-e831 被引量:3
标识
DOI:10.1016/j.wneu.2023.04.029
摘要

To determine whether spinal metastatic lesions originated from lung cancer or from other cancers based on spinal contrast-enhanced T1 (CET1) magnetic resonance (MR) images analyzed using radiomics (RAD) and deep learning (DL) methods.We recruited and retrospectively reviewed 173 patients diagnosed with spinal metastases at two different centers between July 2018 and June 2021. Of these, 68 involved lung cancer and 105 were other types of cancer. They were assigned to an internal cohort of 149 patients, randomly divided into a training set and a validation set, and to an external cohort of 24 patients. All patients underwent CET1-MR imaging before surgery or biopsy. We developed two predictive algorithms: a DL model and a RAD model. We compared performance between models, and against human radiological assessment, via accuracy (ACC) and receiver operating characteristic (ROC) analyses. Furthermore, we analyzed the correlation between RAD and DL features.The DL model outperformed RAD model across the board, with ACC/ area under the receiver operating characteristic curve (AUC) values of 0.93/0.94 (DL) versus 0.84/0.93 (RAD) when applied to the training set from the internal cohort, 0.74/0.76 versus 0.72/0.75 when applied to the validation set, and 0.72/0.76 versus 0.69/0.72 when applied to the external test cohort. For the validation set, it also outperformed expert radiological assessment (ACC: 0.65, AUC: 0.68). We only found weak correlations between DL and RAD features.The DL algorithm successfully identified the origin of spinal metastases from pre-operative CET1-MR images, outperforming both RAD models and expert assessment by trained radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助懒大王要摆烂采纳,获得10
刚刚
花草般的清香完成签到,获得积分10
1秒前
Lyven发布了新的文献求助10
1秒前
3秒前
烟花应助qiu采纳,获得10
4秒前
超帅慕晴发布了新的文献求助10
4秒前
天天发布了新的文献求助10
9秒前
sunaijia发布了新的文献求助10
10秒前
14秒前
李爱国应助嘟嘟嘟采纳,获得10
17秒前
17秒前
19秒前
19秒前
罗浚航发布了新的文献求助10
20秒前
宇智波开心完成签到 ,获得积分10
20秒前
21秒前
海阔云高完成签到 ,获得积分10
21秒前
天生圣人完成签到,获得积分10
22秒前
gu发布了新的文献求助10
23秒前
super chan发布了新的文献求助10
26秒前
26秒前
Tree完成签到,获得积分20
31秒前
嘟嘟嘟发布了新的文献求助10
31秒前
什么什么发布了新的文献求助10
33秒前
情怀应助新羽采纳,获得10
34秒前
科研小生完成签到,获得积分10
37秒前
38秒前
赤安完成签到,获得积分10
38秒前
anne完成签到 ,获得积分10
41秒前
121呀发布了新的文献求助10
44秒前
天天快乐应助super chan采纳,获得10
44秒前
44秒前
46秒前
46秒前
48秒前
虚心的如曼完成签到 ,获得积分10
48秒前
Johann完成签到,获得积分10
48秒前
SciGPT应助莱奥寻风采纳,获得10
49秒前
shuang发布了新的文献求助10
49秒前
木九发布了新的文献求助20
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296