Radiomics for the identification of extraprostatic extension with prostate MRI: a systematic review and meta-analysis

医学 无线电技术 列线图 神经组阅片室 荟萃分析 接收机工作特性 漏斗图 林地 子群分析 医学物理学 出版偏见 放射科 肿瘤科 内科学 神经学 精神科
作者
Andrea Ponsiglione,Michele Gambardella,Arnaldo Stanzione,Roberta Green,Valeria Cantoni,Carmela Nappi,Felice Crocetto,Renato Cuocolo,Alberto Cuocolo,Massimo Imbriaco
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (6): 3981-3991 被引量:8
标识
DOI:10.1007/s00330-023-10427-3
摘要

Abstract Objectives Extraprostatic extension (EPE) of prostate cancer (PCa) is predicted using clinical nomograms. Incorporating MRI could represent a leap forward, although poor sensitivity and standardization represent unsolved issues. MRI radiomics has been proposed for EPE prediction. The aim of the study was to systematically review the literature and perform a meta-analysis of MRI-based radiomics approaches for EPE prediction. Materials and methods Multiple databases were systematically searched for radiomics studies on EPE detection up to June 2022. Methodological quality was appraised according to Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS). The area under the receiver operating characteristic curves (AUC) was pooled to estimate predictive accuracy. A random-effects model estimated overall effect size. Statistical heterogeneity was assessed with I 2 value. Publication bias was evaluated with a funnel plot. Subgroup analyses were performed to explore heterogeneity. Results Thirteen studies were included, showing limitations in study design and methodological quality (median RQS 10/36), with high statistical heterogeneity. Pooled AUC for EPE identification was 0.80. In subgroup analysis, test-set and cross-validation-based studies had pooled AUC of 0.85 and 0.89 respectively. Pooled AUC was 0.72 for deep learning (DL)–based and 0.82 for handcrafted radiomics studies and 0.79 and 0.83 for studies with multiple and single scanner data, respectively. Finally, models with the best predictive performance obtained using radiomics features showed pooled AUC of 0.82, while those including clinical data of 0.76. Conclusion MRI radiomics–powered models to identify EPE in PCa showed a promising predictive performance overall. However, methodologically robust, clinically driven research evaluating their diagnostic and therapeutic impact is still needed. Clinical relevance statement Radiomics might improve the management of prostate cancer patients increasing the value of MRI in the assessment of extraprostatic extension. However, it is imperative that forthcoming research prioritizes confirmation studies and a stronger clinical orientation to solidify these advancements. Key Points • MRI radiomics deserves attention as a tool to overcome the limitations of MRI in prostate cancer local staging. • Pooled AUC was 0.80 for the 13 included studies, with high heterogeneity (84.7%, p < .001), methodological issues, and poor clinical orientation. • Methodologically robust radiomics research needs to focus on increasing MRI sensitivity and bringing added value to clinical nomograms at patient level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyh_gc发布了新的文献求助10
1秒前
胖胖猪完成签到,获得积分10
1秒前
某某某发布了新的文献求助10
1秒前
orixero应助露露采纳,获得10
1秒前
1秒前
moose发布了新的文献求助10
2秒前
爱笑百招完成签到,获得积分20
2秒前
子车茗应助mouhui采纳,获得30
2秒前
拾一完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助小鹿采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
6秒前
丘比特应助儒雅慕灵采纳,获得10
6秒前
sing发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助gyx采纳,获得10
7秒前
7秒前
Afei发布了新的文献求助10
7秒前
7秒前
可爱的函函应助yaoyh_gc采纳,获得10
7秒前
chenwei完成签到,获得积分10
8秒前
drsquall完成签到,获得积分10
8秒前
Yvette发布了新的文献求助10
8秒前
9秒前
阿狸a发布了新的文献求助10
9秒前
所所应助1huiqina采纳,获得10
9秒前
111完成签到,获得积分10
10秒前
10秒前
dandany发布了新的文献求助20
10秒前
Cu_wx完成签到,获得积分10
10秒前
10秒前
侯晓宝发布了新的文献求助10
11秒前
无限山晴发布了新的文献求助10
11秒前
11秒前
11秒前
万能图书馆应助123采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557