亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence modelling human mental fatigue: A comprehensive survey

精神疲劳 认知 计算机科学 人工智能 认知心理学 心理学 应用心理学 精神科
作者
Alexandre Lambert,Aakash Soni,Assia Soukane,Amar Ramdane-Chérif,Arnaud Rabat
出处
期刊:Neurocomputing [Elsevier]
卷期号:567: 126999-126999 被引量:2
标识
DOI:10.1016/j.neucom.2023.126999
摘要

Mental fatigue refers to the decline in cognitive abilities that can occur as a result of prolonged mental exertion. Neuroscientists have been studying mental fatigue for a while. They clearly understand some underlying mechanisms of mental fatigue, such as brain chemistry and neural activity changes. However, defining mental fatigue is still an open research question. Despite this, neuroscience and cognitive psychology has made significant progress in understanding the causes and consequences of mental fatigue. In contrast, computer scientists presumably have a limited understanding of mental fatigue. This lack of understanding leads to inadequate models of mental fatigue in computer science. However, the ever evolving field of artificial intelligence (AI) shows a great potential to answer the open challenges in mental fatigue modelling. For instance, AI with fuzzy rules, machine learning or deep learning algorithms, as well as the methods of model explanation can be a valuable tool for creating accurate models of mental fatigue. Artificial intelligence models can learn from large amounts of data and accurately predict mental fatigue. However, modelling efforts are often more focused on acquiring parameters than studying and validating them within the model. Models developed in this way suffer problems with reliability making it challenging to understand the underlying causes of mental fatigue. Therefore, it is essential balance between these parameters’ correct acquisition, validation and interaction to create more accurate models of mental fatigue. In our survey, we have observed that an unspecified modelling impact the model at four scale : experimental design, data acquisition and processing, choice of indicators or parameters and reasoning. We provide some useful guidelines through criticisms for modelling, which would be closer to reality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joe完成签到 ,获得积分0
2秒前
andrele应助SAIL采纳,获得10
4秒前
shuai发布了新的文献求助10
5秒前
bkagyin应助shuai采纳,获得10
9秒前
风趣的芝麻完成签到 ,获得积分10
19秒前
qyh关闭了qyh文献求助
20秒前
Hello应助木木采纳,获得10
22秒前
张流筝完成签到 ,获得积分10
25秒前
xingxing完成签到 ,获得积分10
27秒前
32秒前
32秒前
33秒前
35秒前
中陆完成签到,获得积分10
37秒前
38秒前
39秒前
星辰大海应助Xyx采纳,获得10
41秒前
你好呀嘻嘻完成签到 ,获得积分10
45秒前
白米完成签到 ,获得积分10
45秒前
Ava应助SUN采纳,获得10
47秒前
中海完成签到,获得积分10
54秒前
55秒前
SUN完成签到,获得积分20
57秒前
59秒前
1分钟前
SUN发布了新的文献求助10
1分钟前
无聊的月饼完成签到 ,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
左代灵发布了新的文献求助20
1分钟前
1分钟前
reegol发布了新的文献求助10
1分钟前
Prime完成签到 ,获得积分10
1分钟前
1分钟前
DW发布了新的文献求助10
1分钟前
刘子发布了新的文献求助10
1分钟前
领导范儿应助Haiverxin采纳,获得10
1分钟前
1分钟前
任性大米完成签到,获得积分10
1分钟前
tao完成签到 ,获得积分10
1分钟前
领导范儿应助DW采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353435
求助须知:如何正确求助?哪些是违规求助? 2978016
关于积分的说明 8683528
捐赠科研通 2659372
什么是DOI,文献DOI怎么找? 1456201
科研通“疑难数据库(出版商)”最低求助积分说明 674297
邀请新用户注册赠送积分活动 665016