化学
吸附
膜
聚合
化学工程
选择性吸附
色谱法
分子印迹聚合物
介孔材料
聚偏氟乙烯
选择性
聚合物
有机化学
催化作用
生物化学
工程类
作者
Yingying Fan,Chen Chen,Xiaobin Zhao,Na Tang,Qiong Zhang,Xueqin Li
标识
DOI:10.1016/j.chroma.2023.464319
摘要
Acteoside (ACT) is one of the phenylethanoid glycosides in Cistanche tubulosa. The ACT molecules have high medicinal value, but the content of ACT is scarce. Therefore, it is imperative to develop the ACT-based molecularly imprinted composite membranes (A-MICMs) with highly selective separation of ACT. In this study, the amine-polyhedral oligomeric sesquisiloxanes (NH2-POSS) were uniformly introduced into polydopamine modified polyvinylidene fluoride (pDA@PVDF) membranes to fabricate NH2-POSS-pDA@PVDF. Then, the ACT-imprinted layers were synthesized on the surface of NH2-POSS-pDA@PVDF to obtain A-MICMs. The results showed that the optimal conditions were 180 mg DA, 12 h DA self-polymerization time, 400 mg NH2-POSS and 10 h washing time for the synthesis of A-MICMs. The results of adsorption isotherm experiments showed that there was a single layer adsorbate analyte on the A-MICMs. The results of adsorption kinetic experiments showed that chemisorption mechanism played a major function in the adsorption process of A-MICMs for ACT. The A-MICMs exhibited the maximum rebinding capacity of 98.37 mg⋅g−1, an excellent rebinding selectivity of 4.63, and the permselectivity of 7.02. The same A-MICMs kept 95.99% of the maximum rebinding capacity for ACT after 5 adsorption-desorption cycles. The designed A-MICMs with the interleaved imprinted network structure have a potential to be applied to the highly selective separation of bioactive components from natural products.
科研通智能强力驱动
Strongly Powered by AbleSci AI