Multi-modal graph neural network for early diagnosis of Alzheimer's disease from sMRI and PET scans

计算机科学 卷积神经网络 模态(人机交互) 神经影像学 人工智能 深度学习 图形 情态动词 正电子发射断层摄影术 人工神经网络 机器学习 模式识别(心理学) 医学 放射科 理论计算机科学 精神科 化学 高分子化学
作者
Yanteng Zhang,Xiaohai He,Yi Hao Chan,Qizhi Teng,Jagath C. Rajapakse
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107328-107328 被引量:24
标识
DOI:10.1016/j.compbiomed.2023.107328
摘要

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide structural and functional information about the brain, respectively. Combining these features leads to improved performance than using a single modality alone in building predictive models for AD diagnosis. However, current multi-modal approaches in deep learning, based on sMRI and PET, are mostly limited to convolutional neural networks, which do not facilitate integration of both image and phenotypic information of subjects. We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains. In this study, we demonstrate how brain networks are created from sMRI or PET images and can be used in a population graph framework that combines phenotypic information with imaging features of the brain networks. Then, we present a multi-modal GNN framework where each modality has its own branch of GNN and a technique that combines the multi-modal data at both the level of node vectors and adjacency matrices. Finally, we perform late fusion to combine the preliminary decisions made in each branch and produce a final prediction. As multi-modality data becomes available, multi-source and multi-modal is the trend of AD diagnosis. We conducted explorative experiments based on multi-modal imaging data combined with non-imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic information on diagnostic performance. Results from experiments demonstrated that our proposed multi-modal approach improves performance for AD diagnosis. Our study also provides technical reference and support the need for multivariate multi-modal diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小趴菜完成签到,获得积分10
4秒前
lcls完成签到,获得积分10
5秒前
5秒前
6秒前
尊敬太阳发布了新的文献求助10
8秒前
风中夜天完成签到 ,获得积分10
8秒前
优雅友蕊完成签到,获得积分10
9秒前
gaga完成签到,获得积分10
10秒前
西北孤傲的狼完成签到,获得积分10
11秒前
多边形完成签到 ,获得积分10
13秒前
李cc完成签到,获得积分10
15秒前
15秒前
快帮我找找完成签到,获得积分10
15秒前
xiezhuochun完成签到 ,获得积分10
16秒前
19秒前
aixiaoming0503完成签到,获得积分10
20秒前
forge完成签到,获得积分10
20秒前
21秒前
Distance完成签到,获得积分10
24秒前
蒋念寒发布了新的文献求助10
25秒前
雪雨夜心完成签到,获得积分10
29秒前
又是一年完成签到,获得积分10
30秒前
Distance发布了新的文献求助10
31秒前
李子完成签到 ,获得积分10
32秒前
32秒前
耍酷的指甲油完成签到,获得积分20
33秒前
安小磊完成签到 ,获得积分10
34秒前
雄i完成签到,获得积分10
37秒前
明亮的遥完成签到 ,获得积分0
39秒前
安澜完成签到,获得积分10
39秒前
MG_XSJ应助1111采纳,获得10
42秒前
尊敬太阳完成签到,获得积分20
43秒前
44秒前
量子星尘发布了新的文献求助30
45秒前
健壮安柏完成签到 ,获得积分10
46秒前
Jasper应助忧郁紫翠采纳,获得10
47秒前
47秒前
48秒前
48秒前
rayqiang完成签到,获得积分10
48秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022