Multi-modal graph neural network for early diagnosis of Alzheimer's disease from sMRI and PET scans

计算机科学 卷积神经网络 模态(人机交互) 神经影像学 人工智能 深度学习 图形 情态动词 正电子发射断层摄影术 人工神经网络 机器学习 模式识别(心理学) 医学 放射科 理论计算机科学 化学 精神科 高分子化学
作者
Yanteng Zhang,Xiaohai He,Yi Hao Chan,Qizhi Teng,Jagath C. Rajapakse
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107328-107328 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107328
摘要

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide structural and functional information about the brain, respectively. Combining these features leads to improved performance than using a single modality alone in building predictive models for AD diagnosis. However, current multi-modal approaches in deep learning, based on sMRI and PET, are mostly limited to convolutional neural networks, which do not facilitate integration of both image and phenotypic information of subjects. We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains. In this study, we demonstrate how brain networks are created from sMRI or PET images and can be used in a population graph framework that combines phenotypic information with imaging features of the brain networks. Then, we present a multi-modal GNN framework where each modality has its own branch of GNN and a technique that combines the multi-modal data at both the level of node vectors and adjacency matrices. Finally, we perform late fusion to combine the preliminary decisions made in each branch and produce a final prediction. As multi-modality data becomes available, multi-source and multi-modal is the trend of AD diagnosis. We conducted explorative experiments based on multi-modal imaging data combined with non-imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic information on diagnostic performance. Results from experiments demonstrated that our proposed multi-modal approach improves performance for AD diagnosis. Our study also provides technical reference and support the need for multivariate multi-modal diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
han应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
linna发布了新的文献求助10
1秒前
外向跳跳糖完成签到 ,获得积分10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
可爱的函函应助爱吃西瓜采纳,获得10
2秒前
2秒前
juni12应助科研通管家采纳,获得10
2秒前
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
研友_nq2JrZ完成签到,获得积分10
4秒前
卿沐完成签到,获得积分20
4秒前
b162发布了新的文献求助10
4秒前
4秒前
充电宝应助cjq采纳,获得10
5秒前
6秒前
哎健身完成签到,获得积分10
6秒前
外向跳跳糖关注了科研通微信公众号
6秒前
毛毛发布了新的文献求助10
7秒前
TT发布了新的文献求助10
8秒前
阿迦完成签到,获得积分10
8秒前
bkagyin应助哲子子采纳,获得10
8秒前
tommy999发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
9秒前
佳佳完成签到,获得积分10
9秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3105631
求助须知:如何正确求助?哪些是违规求助? 2756681
关于积分的说明 7641226
捐赠科研通 2410796
什么是DOI,文献DOI怎么找? 1279097
科研通“疑难数据库(出版商)”最低求助积分说明 617641
版权声明 599262