Multi-modal graph neural network for early diagnosis of Alzheimer's disease from sMRI and PET scans

计算机科学 卷积神经网络 模态(人机交互) 神经影像学 人工智能 深度学习 图形 情态动词 正电子发射断层摄影术 人工神经网络 机器学习 模式识别(心理学) 医学 放射科 理论计算机科学 化学 精神科 高分子化学
作者
Yanteng Zhang,Xiaohai He,Yi-Hao Chan,Qizhi Teng,Jagath C Rajapakse,Yanteng Zhang,Xiaohai He,Yi-Hao Chan,Qizhi Teng,Jagath C Rajapakse
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107328-107328 被引量:58
标识
DOI:10.1016/j.compbiomed.2023.107328
摘要

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide structural and functional information about the brain, respectively. Combining these features leads to improved performance than using a single modality alone in building predictive models for AD diagnosis. However, current multi-modal approaches in deep learning, based on sMRI and PET, are mostly limited to convolutional neural networks, which do not facilitate integration of both image and phenotypic information of subjects. We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains. In this study, we demonstrate how brain networks are created from sMRI or PET images and can be used in a population graph framework that combines phenotypic information with imaging features of the brain networks. Then, we present a multi-modal GNN framework where each modality has its own branch of GNN and a technique that combines the multi-modal data at both the level of node vectors and adjacency matrices. Finally, we perform late fusion to combine the preliminary decisions made in each branch and produce a final prediction. As multi-modality data becomes available, multi-source and multi-modal is the trend of AD diagnosis. We conducted explorative experiments based on multi-modal imaging data combined with non-imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic information on diagnostic performance. Results from experiments demonstrated that our proposed multi-modal approach improves performance for AD diagnosis. Our study also provides technical reference and support the need for multivariate multi-modal diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
12发布了新的文献求助10
2秒前
3秒前
脆筒完成签到,获得积分10
3秒前
2620完成签到,获得积分10
3秒前
3秒前
3秒前
123456发布了新的文献求助10
3秒前
Akim应助催催催采纳,获得10
5秒前
5秒前
碧蓝老黑发布了新的文献求助10
5秒前
5秒前
JamesPei应助真实的语堂采纳,获得10
5秒前
科目三应助小巧的柚子采纳,获得10
5秒前
emoji发布了新的文献求助10
8秒前
花开富贵发布了新的文献求助10
8秒前
脆筒发布了新的文献求助10
8秒前
8秒前
9秒前
Akim应助真实的亦竹采纳,获得10
9秒前
勤奋夏兰发布了新的文献求助10
9秒前
ss完成签到,获得积分10
10秒前
10秒前
12完成签到,获得积分10
10秒前
11秒前
打工人发布了新的文献求助10
11秒前
11秒前
ky发布了新的文献求助10
11秒前
12秒前
小虾米发布了新的文献求助10
14秒前
14秒前
wanci应助kyros采纳,获得10
14秒前
糯yyt发布了新的文献求助10
14秒前
默默发布了新的文献求助30
15秒前
15秒前
眠妃完成签到 ,获得积分10
16秒前
云渊完成签到,获得积分10
17秒前
jiangx完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674