Multi-modal graph neural network for early diagnosis of Alzheimer's disease from sMRI and PET scans

计算机科学 卷积神经网络 模态(人机交互) 神经影像学 人工智能 深度学习 图形 情态动词 正电子发射断层摄影术 人工神经网络 机器学习 模式识别(心理学) 医学 放射科 理论计算机科学 化学 精神科 高分子化学
作者
Yanteng Zhang,Xiaohai He,Yi Hao Chan,Qizhi Teng,Jagath C. Rajapakse
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107328-107328 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107328
摘要

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide structural and functional information about the brain, respectively. Combining these features leads to improved performance than using a single modality alone in building predictive models for AD diagnosis. However, current multi-modal approaches in deep learning, based on sMRI and PET, are mostly limited to convolutional neural networks, which do not facilitate integration of both image and phenotypic information of subjects. We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains. In this study, we demonstrate how brain networks are created from sMRI or PET images and can be used in a population graph framework that combines phenotypic information with imaging features of the brain networks. Then, we present a multi-modal GNN framework where each modality has its own branch of GNN and a technique that combines the multi-modal data at both the level of node vectors and adjacency matrices. Finally, we perform late fusion to combine the preliminary decisions made in each branch and produce a final prediction. As multi-modality data becomes available, multi-source and multi-modal is the trend of AD diagnosis. We conducted explorative experiments based on multi-modal imaging data combined with non-imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic information on diagnostic performance. Results from experiments demonstrated that our proposed multi-modal approach improves performance for AD diagnosis. Our study also provides technical reference and support the need for multivariate multi-modal diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yui发布了新的文献求助20
刚刚
美好乐松发布了新的文献求助10
刚刚
fakte完成签到,获得积分10
1秒前
无心的青槐应助椒盐丸子采纳,获得10
1秒前
潮汐完成签到,获得积分10
3秒前
啦啦啦发布了新的文献求助10
5秒前
7秒前
852应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
iNk应助科研通管家采纳,获得50
9秒前
打打应助科研通管家采纳,获得20
9秒前
neuarcher应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
HarryYang完成签到 ,获得积分10
10秒前
小二郎应助yana采纳,获得10
10秒前
lier发布了新的文献求助20
10秒前
11秒前
11秒前
桐安完成签到 ,获得积分10
11秒前
13秒前
13秒前
Akim应助YI点半的飞机场采纳,获得10
15秒前
领导范儿应助zhuyq采纳,获得10
15秒前
16秒前
17秒前
夕阳平常事完成签到,获得积分10
18秒前
20秒前
JINY完成签到,获得积分10
22秒前
22秒前
肚子圆圆的关注了科研通微信公众号
23秒前
不配.应助啦啦啦采纳,获得10
23秒前
万能图书馆应助啦啦啦采纳,获得10
23秒前
心心发布了新的文献求助20
24秒前
qing2010发布了新的文献求助10
25秒前
29秒前
慕青应助内向的发卡采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134988
求助须知:如何正确求助?哪些是违规求助? 2785963
关于积分的说明 7774538
捐赠科研通 2441779
什么是DOI,文献DOI怎么找? 1298177
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825