Location and time embedded feature representation for spatiotemporal traffic prediction

计算机科学 时间戳 杠杆(统计) 数据挖掘 图形 离群值 卷积神经网络 图嵌入 人工智能 机器学习 理论计算机科学 实时计算
作者
Wei Li,Xin Liu,Wei Tao,Lei Zhang,Junhua Zou,Yu Pan,Zhisong Pan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122449-122449 被引量:6
标识
DOI:10.1016/j.eswa.2023.122449
摘要

As a fundamental spatiotemporal sequence forecasting problem, traffic prediction is pivotal in transportation management and urban computing. Nonetheless, the intricate and dynamic nature of spatiotemporal correlations presents significant obstacles in acquiring precise forecasts. Existing techniques utilize graph convolutional networks in conjunction with temporal modules, such as recurrent neural networks or transformer-based structures, to effectively extract spatiotemporal features. Unfortunately, current approaches struggle with outliers and fail to capture potential global correlations between different timestamps. In this study, we propose an innovative Spatio-Temporal Graph Convolution Network with Embedded location and time features (STEGCN) for traffic prediction problems, which can generate precise and prompt predictions. STEGCN effectively captures the complex interdependencies among location, time, and traffic volume by leveraging the TransD algorithm to embed their representations. For each timestamp, a graph convolution module is exploited to capture the spatial features, merged with the embeddings of location and time that serve as global external information. Then, we leverage a temporal module composed of 1-D convolutions to capture the spatiotemporal patterns. The traffic volume embedding is employed to constrain predictions within a reasonable range. Extensive experiments and rigorous analysis show that our STEGCN model outperforms state-of-the-art baselines, demonstrating exceptional performance and potential for practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助从别后忆相逢采纳,获得10
1秒前
xiaoan发布了新的文献求助10
1秒前
2秒前
3秒前
虚拟的凌旋完成签到 ,获得积分10
4秒前
刘晓丹发布了新的文献求助10
4秒前
4秒前
桐桐应助跳跃保温杯采纳,获得10
5秒前
小蘑菇应助DingJJ采纳,获得10
5秒前
知行合一发布了新的文献求助10
5秒前
drsquall完成签到,获得积分10
5秒前
5秒前
huilihub完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Kikua发布了新的文献求助30
8秒前
pian完成签到,获得积分10
8秒前
8秒前
8秒前
一車十子寒完成签到,获得积分10
9秒前
发嗲的高跟鞋完成签到 ,获得积分10
9秒前
9秒前
虚拟的凌旋关注了科研通微信公众号
9秒前
王新华完成签到,获得积分10
9秒前
研友_Z3342Z完成签到,获得积分10
10秒前
西西歪应助刘晓丹采纳,获得10
10秒前
YataMisaki发布了新的文献求助10
10秒前
渣渣完成签到 ,获得积分10
10秒前
跳跃保温杯完成签到,获得积分20
10秒前
popcorn完成签到,获得积分10
12秒前
Xx丶完成签到,获得积分10
12秒前
sci来来来发布了新的文献求助10
12秒前
北栀发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
林夕完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993