MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学 社会科学 数学分析 社会学
作者
Junning Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107492-107492 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半颗橙子完成签到 ,获得积分10
刚刚
雪天的阳完成签到 ,获得积分10
3秒前
欧耶欧椰完成签到 ,获得积分10
4秒前
沈华炜完成签到,获得积分10
10秒前
纯真忆秋完成签到,获得积分10
11秒前
大力水手完成签到,获得积分10
11秒前
专注大门完成签到 ,获得积分10
13秒前
15秒前
15秒前
czzlancer完成签到,获得积分10
16秒前
guyuangyy完成签到,获得积分10
20秒前
123433发布了新的文献求助10
20秒前
26秒前
王勇发布了新的文献求助10
26秒前
Faceless发布了新的文献求助10
31秒前
123433完成签到,获得积分10
31秒前
紫菜完成签到,获得积分10
32秒前
瓦罐汤完成签到 ,获得积分10
33秒前
lyy完成签到 ,获得积分10
36秒前
时林完成签到,获得积分10
37秒前
酷酷依秋完成签到,获得积分10
38秒前
TOUHOUU完成签到 ,获得积分10
38秒前
凌寻冬完成签到,获得积分10
39秒前
李雪松完成签到 ,获得积分10
47秒前
小杰发布了新的文献求助10
49秒前
CipherSage应助李哈哈采纳,获得10
50秒前
王勇完成签到,获得积分10
50秒前
香山叶正红完成签到 ,获得积分10
53秒前
英吉利25发布了新的文献求助10
56秒前
喜来乐完成签到,获得积分10
57秒前
我独舞完成签到 ,获得积分10
58秒前
yy完成签到 ,获得积分10
58秒前
灰玲牛应助桃子采纳,获得10
58秒前
59秒前
1分钟前
1分钟前
李哈哈发布了新的文献求助10
1分钟前
可取完成签到,获得积分10
1分钟前
123_完成签到,获得积分10
1分钟前
HtObama完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511022
关于积分的说明 11156025
捐赠科研通 3245496
什么是DOI,文献DOI怎么找? 1793089
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255