MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学分析 社会科学 数学 社会学
作者
Jiatai Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107492-107492 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dawn发布了新的文献求助10
1秒前
马慕蕊发布了新的文献求助10
3秒前
林飞溯发布了新的文献求助10
4秒前
江江关注了科研通微信公众号
5秒前
可乐发布了新的文献求助10
6秒前
Akim应助乐乐乐乐乐乐采纳,获得10
8秒前
天天快乐应助傻傻乐采纳,获得30
8秒前
丘比特应助高高的茹妖采纳,获得10
10秒前
万能图书馆应助虚幻姝采纳,获得10
13秒前
优美荠完成签到,获得积分10
13秒前
DUI发布了新的文献求助20
15秒前
小二郎应助Spine Lin采纳,获得10
15秒前
天真惜文发布了新的文献求助10
16秒前
wer发布了新的文献求助20
16秒前
传奇3应助聪慧豁采纳,获得10
16秒前
16秒前
顺其自然完成签到 ,获得积分10
17秒前
领导范儿应助冷艳的一区采纳,获得10
17秒前
18秒前
小学生完成签到,获得积分10
18秒前
张亚慧完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
科研通AI2S应助成成采纳,获得10
19秒前
20秒前
suzy完成签到,获得积分10
20秒前
念念发布了新的文献求助10
20秒前
21秒前
乔柒柒完成签到,获得积分10
21秒前
21秒前
实验室同学完成签到,获得积分10
21秒前
Bellamy发布了新的文献求助30
23秒前
Ian完成签到 ,获得积分10
23秒前
溪与芮行完成签到 ,获得积分10
25秒前
26秒前
26秒前
慕青应助念念采纳,获得10
26秒前
shadow发布了新的文献求助10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240