MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学分析 社会科学 数学 社会学
作者
Junning Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107492-107492 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lll发布了新的文献求助10
2秒前
猫舍完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助yy采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
FKKKKSY应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
爱笑难摧发布了新的文献求助10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
小文发布了新的文献求助10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
tuanheqi应助科研通管家采纳,获得150
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
ho应助科研通管家采纳,获得10
8秒前
wang发布了新的文献求助10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
田様应助神勇朝雪采纳,获得10
8秒前
lalala应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
wczhang1999发布了新的文献求助20
8秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300369
求助须知:如何正确求助?哪些是违规求助? 4448262
关于积分的说明 13845572
捐赠科研通 4333969
什么是DOI,文献DOI怎么找? 2379255
邀请新用户注册赠送积分活动 1374403
关于科研通互助平台的介绍 1340056