MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学分析 社会科学 数学 社会学
作者
Junning Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107492-107492 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南宫书瑶完成签到,获得积分10
刚刚
fff发布了新的文献求助10
刚刚
刚刚
jam发布了新的文献求助20
1秒前
流萤完成签到,获得积分10
1秒前
hh关闭了hh文献求助
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
科研菜狗完成签到,获得积分10
2秒前
2秒前
美好山槐完成签到,获得积分10
2秒前
August完成签到,获得积分10
2秒前
smile完成签到,获得积分10
2秒前
daxiangjiao完成签到,获得积分10
3秒前
3秒前
飞艇发布了新的文献求助10
3秒前
李健的小迷弟应助罗克采纳,获得10
3秒前
111完成签到,获得积分10
3秒前
含蓄的安蕾完成签到,获得积分10
3秒前
舒心无剑完成签到 ,获得积分10
4秒前
4秒前
h1909完成签到,获得积分10
4秒前
左丘尔阳完成签到,获得积分10
4秒前
叁拾肆完成签到,获得积分10
4秒前
5秒前
科研菜狗发布了新的文献求助10
5秒前
负责的母鸡完成签到,获得积分10
5秒前
5秒前
Faceman完成签到,获得积分20
6秒前
cc2064完成签到,获得积分10
6秒前
科研的人完成签到 ,获得积分10
7秒前
寒冷南晴完成签到,获得积分10
7秒前
ceeray23发布了新的文献求助20
7秒前
7秒前
左丘尔阳发布了新的文献求助10
8秒前
闪闪凝梦发布了新的文献求助10
8秒前
黄大仙完成签到,获得积分10
8秒前
浮游应助daxiangjiao采纳,获得10
8秒前
小青椒完成签到,获得积分0
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997