已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学分析 社会科学 数学 社会学
作者
Junning Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107492-107492 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Royal耗子发布了新的文献求助10
刚刚
慕青应助诺贝尔一直讲采纳,获得30
1秒前
公西凝芙完成签到,获得积分10
1秒前
科研通AI6应助弎夜采纳,获得30
1秒前
langqi发布了新的文献求助10
2秒前
Miya发布了新的文献求助30
2秒前
3秒前
haobhaobhaob完成签到,获得积分10
5秒前
凯蒂发布了新的文献求助10
6秒前
8秒前
哎健身发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
momoni完成签到 ,获得积分10
10秒前
优秀的山芙关注了科研通微信公众号
11秒前
12秒前
豆豆可发布了新的文献求助10
14秒前
Olivia发布了新的文献求助10
17秒前
可爱的函函应助langqi采纳,获得10
18秒前
21秒前
22秒前
Crystal完成签到 ,获得积分10
24秒前
Zlq发布了新的文献求助10
24秒前
26秒前
肖易应助幸福大白采纳,获得10
26秒前
zyq完成签到 ,获得积分10
27秒前
故城完成签到 ,获得积分10
27秒前
车灵寒发布了新的文献求助20
32秒前
脑洞疼应助Olivia采纳,获得30
32秒前
33秒前
wab完成签到,获得积分0
33秒前
弎夜发布了新的文献求助30
35秒前
忧心的网络完成签到,获得积分20
37秒前
不想干活应助幸福大白采纳,获得10
39秒前
不想干活应助幸福大白采纳,获得10
39秒前
万能图书馆应助幸福大白采纳,获得10
39秒前
领导范儿应助coollz采纳,获得10
40秒前
ccm应助科研通管家采纳,获得10
40秒前
深情安青应助科研通管家采纳,获得10
40秒前
丘比特应助科研通管家采纳,获得10
40秒前
丘比特应助科研通管家采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542