MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学分析 社会科学 数学 社会学
作者
Junning Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107492-107492 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
丘比特应助小木子采纳,获得10
2秒前
2秒前
汤圆关注了科研通微信公众号
2秒前
cjdsb发布了新的文献求助10
2秒前
3秒前
wxy发布了新的文献求助10
3秒前
3秒前
4秒前
巴黎的防发布了新的文献求助10
4秒前
英俊的铭应助温馨采纳,获得10
5秒前
佳银完成签到,获得积分10
6秒前
dalibaba发布了新的文献求助10
6秒前
6秒前
默默善愁发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
奋斗向南发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
levitt233完成签到 ,获得积分10
10秒前
mona完成签到 ,获得积分10
10秒前
zero完成签到 ,获得积分10
11秒前
华仔应助666采纳,获得10
12秒前
清绘发布了新的文献求助10
13秒前
学不完了发布了新的文献求助10
13秒前
冷静的冰露完成签到,获得积分10
14秒前
14秒前
16秒前
加油少年完成签到,获得积分10
16秒前
nancylan应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
Wefaily应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582