MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学分析 社会科学 数学 社会学
作者
Junning Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107492-107492 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快盼曼发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
nemo发布了新的文献求助10
2秒前
学术蝗虫完成签到,获得积分10
2秒前
justin完成签到,获得积分10
3秒前
西瓜啵啵完成签到,获得积分10
5秒前
小周完成签到,获得积分10
5秒前
Louki完成签到 ,获得积分10
5秒前
温暖的颜演完成签到 ,获得积分10
6秒前
yudandan@CJLU发布了新的文献求助10
7秒前
科研小民工应助_呱_采纳,获得50
7秒前
愉快盼曼完成签到,获得积分20
7秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
13679165979发布了新的文献求助10
9秒前
温暖的钻石完成签到,获得积分10
9秒前
科研通AI5应助赖道之采纳,获得10
9秒前
10秒前
苏卿应助Eric采纳,获得10
10秒前
思源应助hhzz采纳,获得10
11秒前
红红完成签到,获得积分10
14秒前
瑶一瑶发布了新的文献求助10
14秒前
NexusExplorer应助刘鹏宇采纳,获得10
14秒前
roselau完成签到,获得积分10
14秒前
yudandan@CJLU完成签到,获得积分10
15秒前
15秒前
半山完成签到,获得积分10
19秒前
吹泡泡的红豆完成签到 ,获得积分10
20秒前
研友_89eBO8完成签到 ,获得积分10
20秒前
隐形曼青应助ZeJ采纳,获得10
20秒前
20秒前
隐形曼青应助温暖的钻石采纳,获得10
21秒前
Khr1stINK发布了新的文献求助10
22秒前
123cxj发布了新的文献求助10
23秒前
星辰大海应助红红采纳,获得10
23秒前
sweetbearm应助小周采纳,获得10
24秒前
科研通AI5应助赖道之采纳,获得10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808