MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug–Drug Interaction Events

计算机科学 图形 机器学习 药物与药物的相互作用 人工神经网络 模式 人工智能 药品 一般化 理论计算机科学 医学 药理学 数学分析 社会科学 数学 社会学
作者
Junning Feng,Yong Liang,Tianwei Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107492-107492 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107492
摘要

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雅雅完成签到 ,获得积分10
1秒前
j7完成签到 ,获得积分10
1秒前
2秒前
2秒前
sunoopp完成签到,获得积分10
2秒前
Fay完成签到,获得积分10
2秒前
满眼星辰发布了新的文献求助10
3秒前
靖旎发布了新的文献求助10
3秒前
3秒前
赘婿应助任性的天空采纳,获得10
3秒前
威武青亦完成签到,获得积分10
4秒前
大胆冰岚发布了新的文献求助10
5秒前
5秒前
英姑应助天狮星上的人采纳,获得10
6秒前
一水独流完成签到,获得积分10
6秒前
7秒前
ccm应助牛马学生采纳,获得10
7秒前
8秒前
李欣超完成签到 ,获得积分10
8秒前
9秒前
娷静完成签到 ,获得积分10
9秒前
Fay发布了新的文献求助10
10秒前
10秒前
10秒前
wxx完成签到,获得积分10
10秒前
11秒前
Aurora完成签到,获得积分10
11秒前
11秒前
嗷嗷小刺猬完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
Jello发布了新的文献求助10
14秒前
那你撒泼发布了新的文献求助10
14秒前
科研通AI6应助H8采纳,获得30
14秒前
15秒前
zzzz完成签到 ,获得积分10
15秒前
15秒前
16秒前
Doctor_Xie发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548