Intelligent recommendation method for offline course resources tax law based on chaos particle swarm optimization algorithm

粒子群优化 计算机科学 混乱的 趋同(经济学) 人工智能 数学优化 数据挖掘 算法 数学 经济增长 经济
作者
Jingjing Huang,Xu Zhang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (6): 10603-10617
标识
DOI:10.3233/jifs-233095
摘要

In view of the individual differences in learners’ abilities, learning objectives, and learning time, an intelligent recommendation method for offline course resources of tax law based on the chaos particle swarm optimization algorithm is proposed to provide personalized digital courses for each learner. The concept map and knowledge structure theory are comprehended to create the network structure map of understanding points of tax law offline courses and determine the learning objectives of learners; the project response theory is used to analyze the ability of different learners; According to the learners’ learning objectives and ability level, the intelligent recommendation model of offline course resources of tax law is established with the minimum concept difference, minimum ability difference, minimum time difference, and minimum learning concept imbalance as the objective functions; Through the cultural framework, the chaotic particle swarm optimization algorithm based on the cultural framework is obtained by combining the particle swarm optimization algorithm and the chaotic mapping algorithm; The algorithm is used to solve the intelligent recommendation model, and the intelligent recommendation results of offline course resources in tax law are obtained. The experiential outcomes indicate that the process has a smaller inverse generation distance, larger super-volume, and smaller distribution performance index when solving the model; that is, the convergence performance and distribution performance of the model is better; This method can effectively recommend offline course resources of tax law for learners intelligently, and the minimum normalized cumulative loss gain is about 0.75, which is significantly higher than other methods, that is, the effect of intelligent recommendation is better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjspidany应助山云采纳,获得30
刚刚
Lc发布了新的文献求助10
刚刚
1秒前
龍fei完成签到,获得积分10
1秒前
hi完成签到,获得积分10
1秒前
xuhuahua发布了新的文献求助10
1秒前
酷波er应助魔幻若血采纳,获得30
1秒前
2秒前
大雄完成签到,获得积分10
2秒前
Akim应助Jiangnj采纳,获得10
3秒前
CipherSage应助春天花会开采纳,获得10
3秒前
听星伴月完成签到,获得积分10
3秒前
hygge完成签到,获得积分20
4秒前
安静的寒风完成签到,获得积分10
4秒前
4秒前
4秒前
zsb发布了新的文献求助10
4秒前
5秒前
菠萝医生发布了新的文献求助10
5秒前
Zy完成签到,获得积分10
6秒前
英姑应助fdsdvczx采纳,获得10
6秒前
SMPs完成签到,获得积分10
6秒前
azixiao发布了新的文献求助10
7秒前
诚心静芙完成签到,获得积分10
7秒前
余同学完成签到,获得积分10
7秒前
幽默与研完成签到,获得积分10
7秒前
科研通AI2S应助xuhuahua采纳,获得10
7秒前
Enma完成签到,获得积分10
8秒前
单纯茹嫣发布了新的文献求助10
8秒前
蒙哥卡恩完成签到 ,获得积分10
8秒前
8秒前
小米完成签到,获得积分10
8秒前
Jiangnj完成签到,获得积分10
8秒前
星辰发布了新的文献求助10
8秒前
王露阳完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI2S应助茂密的头发采纳,获得10
10秒前
努力科研的博士僧完成签到,获得积分10
10秒前
占瑾瑜发布了新的文献求助10
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3246616
求助须知:如何正确求助?哪些是违规求助? 2889902
关于积分的说明 8260972
捐赠科研通 2558422
什么是DOI,文献DOI怎么找? 1387184
科研通“疑难数据库(出版商)”最低求助积分说明 650498
邀请新用户注册赠送积分活动 626951