Intelligent recommendation method for offline course resources tax law based on chaos particle swarm optimization algorithm

粒子群优化 计算机科学 混乱的 趋同(经济学) 人工智能 数学优化 数据挖掘 算法 数学 经济 经济增长
作者
Jingjing Huang,Xu Zhang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (6): 10603-10617
标识
DOI:10.3233/jifs-233095
摘要

In view of the individual differences in learners’ abilities, learning objectives, and learning time, an intelligent recommendation method for offline course resources of tax law based on the chaos particle swarm optimization algorithm is proposed to provide personalized digital courses for each learner. The concept map and knowledge structure theory are comprehended to create the network structure map of understanding points of tax law offline courses and determine the learning objectives of learners; the project response theory is used to analyze the ability of different learners; According to the learners’ learning objectives and ability level, the intelligent recommendation model of offline course resources of tax law is established with the minimum concept difference, minimum ability difference, minimum time difference, and minimum learning concept imbalance as the objective functions; Through the cultural framework, the chaotic particle swarm optimization algorithm based on the cultural framework is obtained by combining the particle swarm optimization algorithm and the chaotic mapping algorithm; The algorithm is used to solve the intelligent recommendation model, and the intelligent recommendation results of offline course resources in tax law are obtained. The experiential outcomes indicate that the process has a smaller inverse generation distance, larger super-volume, and smaller distribution performance index when solving the model; that is, the convergence performance and distribution performance of the model is better; This method can effectively recommend offline course resources of tax law for learners intelligently, and the minimum normalized cumulative loss gain is about 0.75, which is significantly higher than other methods, that is, the effect of intelligent recommendation is better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萱1988发布了新的文献求助10
1秒前
1秒前
xyf完成签到,获得积分10
1秒前
Engen发布了新的文献求助10
1秒前
Emilia完成签到,获得积分10
1秒前
2秒前
伶俐的书南完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
碳土不凡完成签到 ,获得积分10
2秒前
114555发布了新的文献求助10
3秒前
他方世界发布了新的文献求助10
3秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
迷路的晓旋完成签到,获得积分10
4秒前
禁止通行发布了新的文献求助10
4秒前
Ray完成签到,获得积分10
6秒前
fmd123完成签到,获得积分20
6秒前
我想吃薯条完成签到 ,获得积分10
6秒前
poppysss发布了新的文献求助10
7秒前
可爱的函函应助一把过采纳,获得10
7秒前
UPUP完成签到,获得积分10
8秒前
DDF完成签到 ,获得积分10
8秒前
9秒前
顾矜应助BenQiu采纳,获得10
9秒前
孙福禄应助牛奶秋刀鱼采纳,获得10
10秒前
@@@发布了新的文献求助10
10秒前
Eusha完成签到,获得积分10
11秒前
吴家辉完成签到,获得积分10
11秒前
zhanwenlin完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
追寻的问玉完成签到 ,获得积分10
13秒前
博修完成签到,获得积分10
15秒前
上官若男应助冷酷严青采纳,获得10
15秒前
辉夜折影完成签到,获得积分10
16秒前
16秒前
16秒前
hayden发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582