已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent recommendation method for offline course resources tax law based on chaos particle swarm optimization algorithm

粒子群优化 计算机科学 混乱的 趋同(经济学) 人工智能 数学优化 数据挖掘 算法 数学 经济 经济增长
作者
Jingjing Huang,Xu Zhang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (6): 10603-10617
标识
DOI:10.3233/jifs-233095
摘要

In view of the individual differences in learners’ abilities, learning objectives, and learning time, an intelligent recommendation method for offline course resources of tax law based on the chaos particle swarm optimization algorithm is proposed to provide personalized digital courses for each learner. The concept map and knowledge structure theory are comprehended to create the network structure map of understanding points of tax law offline courses and determine the learning objectives of learners; the project response theory is used to analyze the ability of different learners; According to the learners’ learning objectives and ability level, the intelligent recommendation model of offline course resources of tax law is established with the minimum concept difference, minimum ability difference, minimum time difference, and minimum learning concept imbalance as the objective functions; Through the cultural framework, the chaotic particle swarm optimization algorithm based on the cultural framework is obtained by combining the particle swarm optimization algorithm and the chaotic mapping algorithm; The algorithm is used to solve the intelligent recommendation model, and the intelligent recommendation results of offline course resources in tax law are obtained. The experiential outcomes indicate that the process has a smaller inverse generation distance, larger super-volume, and smaller distribution performance index when solving the model; that is, the convergence performance and distribution performance of the model is better; This method can effectively recommend offline course resources of tax law for learners intelligently, and the minimum normalized cumulative loss gain is about 0.75, which is significantly higher than other methods, that is, the effect of intelligent recommendation is better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻瓜发布了新的文献求助10
1秒前
善学以致用应助卫梦亚采纳,获得10
1秒前
Xinli发布了新的文献求助10
1秒前
sheep完成签到,获得积分10
2秒前
璆璆的虾完成签到 ,获得积分10
2秒前
秋qiu完成签到 ,获得积分10
5秒前
打打应助风味土豆片采纳,获得10
6秒前
8秒前
Akim应助麻瓜采纳,获得10
8秒前
机智的寒荷完成签到 ,获得积分10
9秒前
田様应助未夕晴采纳,获得10
11秒前
11秒前
Xinli完成签到,获得积分10
13秒前
14秒前
简单的储发布了新的文献求助10
14秒前
15秒前
科研小废物完成签到 ,获得积分10
16秒前
爱学习发布了新的文献求助10
16秒前
18秒前
22秒前
Zert发布了新的文献求助10
22秒前
专注酸奶完成签到,获得积分10
23秒前
华仔应助爱学习采纳,获得10
26秒前
草上飞完成签到 ,获得积分10
27秒前
科研小生完成签到,获得积分10
27秒前
andrewyu完成签到,获得积分10
27秒前
霜白发布了新的文献求助10
28秒前
SciGPT应助微笑的亦云采纳,获得10
28秒前
Ru完成签到 ,获得积分10
30秒前
31秒前
简单的储完成签到,获得积分10
31秒前
迷路的沛芹完成签到 ,获得积分10
31秒前
35秒前
35秒前
36秒前
36秒前
zhaoxi完成签到 ,获得积分10
37秒前
Meyako完成签到 ,获得积分0
38秒前
sss发布了新的文献求助10
39秒前
科研小生发布了新的文献求助10
39秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345415
求助须知:如何正确求助?哪些是违规求助? 4480421
关于积分的说明 13946162
捐赠科研通 4377871
什么是DOI,文献DOI怎么找? 2405468
邀请新用户注册赠送积分活动 1398083
关于科研通互助平台的介绍 1370463