皮肤致敏
敏化
计算机科学
药理学
数据库
医学
化学
免疫学
作者
Patricia Parris,Geraldine Whelan,Anders Burild,Jessica Whritenour,Uma Bruen,Joel P. Bercu,Courtney M. Callis,Martyn L. Chilton,Jessica Graham,Esther Johann,Candice Johnson,Troy Griffin,Martín Kohan,Elizabeth A. Martin,Melisa Masuda-Herrera,Brad Stanard,Maureen T. Cruz,Lee M. Nagao
出处
期刊:Pda Journal of Pharmaceutical Science and Technology
[Parenteral Drug Association, Inc.]
日期:2023-09-15
卷期号:: pdajpst.2022.012811-pdajpst.2022.012811
被引量:3
标识
DOI:10.5731/pdajpst.2022.012811
摘要
Quality by design is the foundation of the risk management framework for extractables and leachables (E&Ls) recommended by the Extractables and Leachables Safety Information Exchange (ELSIE). Following these principles during the selection of materials for pharmaceutical product development minimizes the presence of highly toxic substances and decreases the health risk of potential leachables in the drug product. Therefore, in the context of the broad arena of chemicals, it is important to distinguish E&Ls as a subset of chemicals and evaluate this relevant chemical space to derive appropriate analytical and safety thresholds. When considering the health hazards posed by E&Ls, one area presenting a challenge is understanding the sensitization potential and whether it poses a risk to patients. A dataset of E&Ls compiled by ELSIE (n=466) was analysed to determine the prevalence and potency of skin sensitizers in this chemical subset and explore a scientifically justified approach to the sensitization assessment of potential leachables in parenteral drug products. Approximately half of the compounds (56%, 259/466) had sensitization data recorded in the ELSIE database and of these, 20% (52/259) are potential skin sensitizers. Only 3% (8/259) of the E&L dataset with sensitization data were considered potent (strong or extreme) sensitizers following in silico analysis and expert review, illustrating that potent sensitizers are not routinely observed as leachables in pharmaceutical products. Our analysis highlights that in silico potency prediction and expert review are key tools during the sensitization assessment process for E&Ls. The results confirm where material selection is anticipated to mitigate the risk of presence of strong and/or extreme sensitizers (e.g., extractable testing via ISO 10993-10), and that implementing thresholds per ICH M7 and/or Masuda-Herrera et al. provides a reasonably conservative approach for establishing the analytical testing and safety thresholds.
科研通智能强力驱动
Strongly Powered by AbleSci AI