Early prediction of acute pancreatitis severity based on changes in pancreatic and peripancreatic computed tomography radiomics nomogram

列线图 医学 无线电技术 接收机工作特性 急性胰腺炎 逻辑回归 队列 置信区间 放射科 曲线下面积 计算机断层摄影术 内科学
作者
Yanmei Zhao,Jing Wei,Bo Xiao,Liu Wang,Xian Jiang,Yuanzhong Zhu,Weiqun He
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (3): 1927-1936 被引量:8
标识
DOI:10.21037/qims-22-821
摘要

Background: Early identification of severe acute pancreatitis (SAP) is key to reducing mortality and improving prognosis. We aimed to establish a radiomics model and nomogram for early prediction of acute pancreatitis (AP) severity based on contrast-enhanced computed tomography (CT) images. Methods: We retrospectively analyzed 215 patients with first-episode AP, including 141 in the training cohort (87 men and 54 women, mean age 51.37±16.09 years) and 74 in the test cohort (40 men and 34 women, mean age 55.49±17.83 years). Radiomics features were extracted from portal venous phase images based on pancreatic and peripancreatic regions. The light gradient boosting machine (LightGBM) algorithm was used for feature selection, a logistic regression (LR) model was established and trained by 10-fold cross-validation, and a nomogram was established based on the best features. The model’s predictive performance was evaluated according to the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, sensitivity, specificity, and accuracy. Results: A total of 13 optimal radiomics features were selected by LightGBM for LR model building. The AUC of the radiomics (LR) model was 0.992 [95% confidence interval (CI): 0.963–0.996] in the training cohort, 0.965 (95% CI: 0.924–0.981) in the validation cohort, and 0.894 (95% CI: 0.789–0.966) in the test cohort. The sensitivity was 0.862 (95% CI: 0.674–0.954), the specificity was 0.800 (95% CI: 0.649–0.899), and the accuracy was 0.824 (95% CI: 0.720–0.919). The nomogram based on the 13 radiomics features showed that SAP would be predicted when the total score was greater than 124. Conclusions: The radiomics model based on enhanced-CT images of pancreatic and peripancreatic regions performed well in the early prediction of AP severity. The nomogram based on selected radiomics features could provide a reference for AP clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术羊发布了新的文献求助10
3秒前
4秒前
4秒前
青青完成签到,获得积分10
4秒前
顺利萧完成签到,获得积分10
5秒前
杳鸢应助满意的雅阳采纳,获得10
6秒前
YC发布了新的文献求助10
6秒前
7秒前
恺撒完成签到 ,获得积分10
8秒前
高大的芫发布了新的文献求助10
9秒前
10秒前
柔弱友卉应助科研通管家采纳,获得20
10秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
笨笨乐枫发布了新的文献求助10
11秒前
冷艳广山完成签到,获得积分10
13秒前
14秒前
15秒前
时尚的凡白完成签到,获得积分10
15秒前
张不大发布了新的文献求助100
15秒前
高大的芫完成签到,获得积分10
17秒前
爱听歌澜发布了新的文献求助20
18秒前
嘟嘟嘟嘟发布了新的文献求助10
18秒前
超帅蜜蜂应助一二采纳,获得10
20秒前
健忘的曼卉完成签到,获得积分10
21秒前
23秒前
笨笨乐枫完成签到,获得积分10
24秒前
CodeCraft应助高大的芫采纳,获得10
24秒前
26秒前
loren发布了新的文献求助10
27秒前
研友_Y59785应助gggyyy采纳,获得10
27秒前
无花果应助Three采纳,获得10
27秒前
zzy发布了新的文献求助10
28秒前
张不大完成签到,获得积分10
28秒前
小瓶子0327完成签到 ,获得积分10
30秒前
一二发布了新的文献求助10
30秒前
guan发布了新的文献求助10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469879
求助须知:如何正确求助?哪些是违规求助? 3063087
关于积分的说明 9081400
捐赠科研通 2753353
什么是DOI,文献DOI怎么找? 1510835
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028