已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A tumor microenvironment-related risk model for predicting the prognosis and tumor immunity of breast cancer patients

肿瘤微环境 肿瘤科 乳腺癌 比例危险模型 医学 免疫系统 免疫疗法 内科学 癌症 生存分析 免疫学
作者
Shengkai Geng,Yi‐Peng Fu,Shao-Mei Fu,Kejin Wu
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:6
标识
DOI:10.3389/fimmu.2022.927565
摘要

Background This study aimed to construct a tumor microenvironment (TME)-related risk model to predict the overall survival (OS) of patients with breast cancer. Methods Gene expression data from The Cancer Genome Atlas was used as the training set. Differentially expressed gene analysis, prognosis analysis, weighted gene co-expression network analysis, Least Absolute Shrinkage and Selection Operator regression analysis, and Wald stepwise Cox regression were performed to screen for the TME-related risk model. Three Gene Expression Omnibus databases were used to validate the predictive efficiency of the prognostic model. The TME-risk-related biological function was investigated using the gene set enrichment analysis (GSEA) method. Tumor immune and mutation signatures were analyzed between low- and high-TME-risk groups. The patients’ response to chemotherapy and immunotherapy were evaluated by the tumor immune dysfunction and exclusion (TIDE) score and immunophenscore (IPS). Results Five TME-related genes were screened for constructing a prognostic signature. Higher TME risk scores were significantly associated with worse clinical outcomes in the training set and the validation set. Correlation and stratification analyses also confirmed the predictive efficiency of the TME risk model in different subtypes and stages of breast cancer. Furthermore, immune checkpoint expression and immune cell infiltration were found to be upregulated in the low-TME-risk group. Biological processes related to immune response functions were proved to be enriched in the low-TME-risk group through GSEA analysis. Tumor mutation analysis and TIDE and IPS analyses showed that the high-TME-risk group had more tumor mutation burden and responded better to immunotherapy. Conclusion The novel and robust TME-related risk model had a strong implication for breast cancer patients in OS, immune response, and therapeutic efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心丹南发布了新的文献求助10
1秒前
5秒前
完美世界应助热心丹南采纳,获得10
7秒前
Gahye完成签到 ,获得积分10
8秒前
虚幻的城发布了新的文献求助10
9秒前
领导范儿应助迷人的映雁采纳,获得10
14秒前
luckkit完成签到 ,获得积分10
15秒前
楠楠2001完成签到 ,获得积分10
18秒前
19秒前
虚幻的城完成签到,获得积分10
19秒前
奋斗的友儿完成签到,获得积分10
19秒前
20秒前
华仔应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
景__完成签到 ,获得积分10
22秒前
Cell发布了新的文献求助10
23秒前
23秒前
23秒前
25秒前
liwang9301完成签到,获得积分10
37秒前
xiao完成签到,获得积分10
37秒前
37秒前
科研通AI5应助yhw采纳,获得10
42秒前
43秒前
43秒前
陈伟杰发布了新的文献求助10
43秒前
小马甲应助Ye采纳,获得10
44秒前
Cell完成签到,获得积分10
44秒前
46秒前
333串发布了新的文献求助10
49秒前
Lynny完成签到 ,获得积分10
49秒前
CipherSage应助毅雅采纳,获得10
49秒前
阿鹿462完成签到 ,获得积分10
50秒前
50秒前
YY发布了新的文献求助10
51秒前
SSSSscoliosis完成签到,获得积分10
55秒前
333串完成签到,获得积分10
57秒前
oceanL完成签到,获得积分10
59秒前
纪震宇发布了新的文献求助10
59秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544330
求助须知:如何正确求助?哪些是违规求助? 3121530
关于积分的说明 9347654
捐赠科研通 2819788
什么是DOI,文献DOI怎么找? 1550415
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265