C2C12型
肌发生
肌肉萎缩
蛋白激酶B
骨骼肌
心肌细胞
化学
萎缩
细胞生物学
信号转导
分子生物学
生物
内科学
内分泌学
医学
作者
Yuanyuan Wu,Ji Che,Peng Jia,Yan-Tao Ma,Qi Han,Xiaolei Wang,Lei Fu,Hongjing Dou,Yongjun Zheng
标识
DOI:10.1016/j.cellsig.2022.110463
摘要
Treatment of skeletal muscle atrophy and strengthening the muscles remain a challenge in modern medicine. Studies have shown that photobiomodulation can inhibit skeletal muscle atrophy and aid in functional recovery. Near-infrared radiation (NIR) therapy has emerged as a complementary therapy for the treatment of skeletal muscle atrophy, but its underlying mechanism remains unclear. Polypyrrole (PPy) is an organic polymer with strong near-infrared absorption, which can generate heat from absorbed NIR. In this study, MHC immunofluorescence staining was performed on C2C12 myoblasts to investigate the differentiation of C2C12 cells after NIR-triggered PPy exposure. As TNF-α-induced C2C12 myotubes were used as a model of muscular atrophy. Giemsa staining was used to determine the myotube diameter. Western blot analysis was performed to examine the proteins involved in the differentiation and atrophy of muscle cells, as well as in the Akt/P70S6K signaling pathway. PPy triggered by NIR promoted the differentiation of C2C12 cells, inhibited C2C12 myotube atrophy caused by TNF-α, and downregulated the expression levels of Atrogin-1 and MuRF 1 protein. In addition, we determined that Akt/P70S6K signaling pathway activity plays a crucial role in the therapeutic effect of NIR-triggered polypyrrole, which was further confirmed by the administration of the Akt inhibitor GDC0068. The optimal conditions for these effects were a PPy concentration of 0.125 mg/ml and NIR exposure for 80 s. We show that the photothermal effect of PPy triggered by near-infrared light can increase the beneficial effects of NIR, promote the differentiation of C2C12 cells, and improve C2C12 myotube atrophy, laying a foundation for its future clinical use.
科研通智能强力驱动
Strongly Powered by AbleSci AI