Unsupervised Test-Time Adaptation Learning for Effective Hyperspectral Image Super-Resolution With Unknown Degeneration

高光谱成像 人工智能 计算机科学 模式识别(心理学) 适应(眼睛) 计算机视觉 图像(数学) 机器学习 心理学 神经科学
作者
Lei Zhang,Jiangtao Nie,Wei Wei,Yanning Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (7): 5008-5025 被引量:6
标识
DOI:10.1109/tpami.2024.3361894
摘要

Fusing a low-resolution hyperspectral image (HSI) with a high-resolution (HR) multi-spectral image has provided an effective way for HSI super-resolution (SR). The key lies on inferring the posteriori of the latent ( i.e. , HR) HSI using an appropriate image prior and the likelihood determined by the degeneration between the latent HSI and the observed images. However, in scenarios with complex imaging environments and various imaging scenes, the prior of HSIs can be prohibitively complicated and the degeneration is often unknown, which causes it difficult to accurately infer the posteriori of each latent HSI. To tackle this problem, we present an unsupervised test-time adaptation learning (UTAL) framework for HSI SR under unknown degeneration. Instead of directly modeling the complicated image prior, it first implicitly learns a content-agnostic prior shared across different images through supervisedly pre-training a mutual-guiding fusion module on extensive synthetic data. Then, it adapts the shared prior to those private characteristics in the latent HSI for posteriori inference through unsupervisedly learning a self-guiding adaptation module and a degeneration estimation network on two observed images in the test phase. Such a two-stage learning scheme models the complicated image prior in a divide-and-conquer manner, which eases the modeling difficulty and improves the prior accuracy. Moreover, the unknown degeneration can be estimated properly. Both of these two advantages empower us to accurately infer the posteriori of the latent HSI, thereby increasing the generalization performance in real applications. Additionally, in order to further mitigate the over-fitting in coping with more challenging cases ( e.g. , degenerations in both spectral and spatial domains are unknown) and speed up, we propose to meta-train UTAL on extensive synthetic SR tasks and solve it using an alternative optimization strategy such that UTAL learns to produce good generalization performance in real challenging cases with a small number of gradient descent steps. To verify the efficacy of UTAL, we evaluate it on HSI SR tasks with different unknown degenerations as well as some other HSI restoration tasks ( e.g. , compressive sensing), and report strong results superior to that of existing competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕剑身完成签到,获得积分10
4秒前
曾建完成签到 ,获得积分10
5秒前
勤奋完成签到,获得积分0
7秒前
一个小胖子完成签到,获得积分10
8秒前
香蕉觅云应助正直的煎蛋采纳,获得10
14秒前
鹏鱼燕完成签到,获得积分10
15秒前
科研执修完成签到,获得积分10
19秒前
研时友完成签到,获得积分10
20秒前
hyjcs完成签到,获得积分0
24秒前
墨月白完成签到,获得积分10
24秒前
呆萌的小海豚完成签到,获得积分10
25秒前
凡事发生必有利于我完成签到,获得积分10
26秒前
王嘉尔完成签到 ,获得积分10
26秒前
nianshu完成签到 ,获得积分10
29秒前
32秒前
ceeray23发布了新的文献求助20
34秒前
安然完成签到 ,获得积分10
34秒前
ooa4321完成签到,获得积分10
37秒前
37秒前
鸣鸣完成签到,获得积分10
37秒前
万能图书馆应助智勇双全采纳,获得10
37秒前
cdercder应助科研通管家采纳,获得10
37秒前
cdercder应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
胡茶茶完成签到 ,获得积分10
38秒前
WANG完成签到,获得积分10
39秒前
41秒前
lili完成签到 ,获得积分10
43秒前
tingalan完成签到,获得积分10
43秒前
wodel完成签到,获得积分10
43秒前
44秒前
45秒前
芽衣完成签到 ,获得积分10
48秒前
48秒前
章鱼完成签到,获得积分10
48秒前
Jeffrey完成签到,获得积分10
50秒前
50秒前
大个应助正直的煎蛋采纳,获得10
50秒前
胖胖橘完成签到 ,获得积分10
51秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742417
求助须知:如何正确求助?哪些是违规求助? 3284938
关于积分的说明 10042353
捐赠科研通 3001636
什么是DOI,文献DOI怎么找? 1647490
邀请新用户注册赠送积分活动 784217
科研通“疑难数据库(出版商)”最低求助积分说明 750676