MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning

计算机科学 人工智能 图形 机器学习 理论计算机科学
作者
Peng Liang,Shiqian Cai,Zongqian Wu,Hui-Fang Shang,Xiaofeng Zhu,Xiaoxiao Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103225-103225
标识
DOI:10.1016/j.media.2024.103225
摘要

Prompt learning has demonstrated impressive efficacy in the fine-tuning of multimodal large models to a wide range of downstream tasks. Nonetheless, applying existing prompt learning methods for the diagnosis of neurological disorder still suffers from two issues: (i) existing methods typically treat all patches equally, despite the fact that only a small number of patches in neuroimaging are relevant to the disease, and (ii) they ignore the structural information inherent in the brain connection network which is crucial for understanding and diagnosing neurological disorders. To tackle these issues, we introduce a novel prompt learning model by learning graph prompts during the fine-tuning process of multimodal models for diagnosing neurological disorders. Specifically, we first leverage GPT-4 to obtain relevant disease concepts and compute semantic similarity between these concepts and all patches. Secondly, we reduce the weight of irrelevant patches according to the semantic similarity between each patch and disease-related concepts. Moreover, we construct a graph among tokens based on these concepts and employ a graph convolutional network layer to extract the structural information of the graph, which is used to prompt the pre-trained multimodal models for diagnosing neurological disorders. Extensive experiments demonstrate that our method achieves superior performance for neurological disorder diagnosis compared with state-of-the-art methods and validated by clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Csunshine完成签到,获得积分10
刚刚
扬嘉諵发布了新的文献求助10
1秒前
科研通AI2S应助俊逸芸遥采纳,获得10
1秒前
NexusExplorer应助洛溪汐采纳,获得10
2秒前
啦啦啦完成签到,获得积分10
2秒前
3秒前
小白完成签到,获得积分20
3秒前
4秒前
cya发布了新的文献求助10
4秒前
4秒前
5秒前
春二虫发布了新的文献求助10
6秒前
鳗鱼鸽子发布了新的文献求助20
7秒前
包容小鸽子完成签到,获得积分10
7秒前
7秒前
8秒前
哈哈发布了新的文献求助10
9秒前
wang完成签到,获得积分10
9秒前
无忧应助饭桶而已啊采纳,获得10
9秒前
11秒前
SciGPT应助顺利水杯采纳,获得10
12秒前
深情安青应助1111采纳,获得10
12秒前
wrufhg发布了新的文献求助10
12秒前
Singularity应助自觉雁玉采纳,获得10
13秒前
13秒前
睿睿斌斌发布了新的文献求助10
13秒前
Rhea发布了新的文献求助10
14秒前
14秒前
不下雨发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
啦啦啦发布了新的文献求助10
18秒前
Hello应助务实绿柏采纳,获得10
18秒前
研友_ZegWmL发布了新的文献求助10
18秒前
19秒前
dengyan完成签到,获得积分10
20秒前
小feng发布了新的文献求助10
21秒前
cya完成签到,获得积分10
21秒前
Phosphene应助RogueChen采纳,获得10
21秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071459
求助须知:如何正确求助?哪些是违规求助? 2725490
关于积分的说明 7489720
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258199
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916