MMGPL: Multimodal Medical Data Analysis with Graph Prompt Learning

计算机科学 人工智能 图形 机器学习 理论计算机科学
作者
Peng Liang,Songyue Cai,Zongqian Wu,Hui-Fang Shang,Xiaofeng Zhu,Xiaoxiao Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103225-103225 被引量:7
标识
DOI:10.1016/j.media.2024.103225
摘要

Prompt learning has demonstrated impressive efficacy in the fine-tuning of multimodal large models to a wide range of downstream tasks. Nonetheless, applying existing prompt learning methods for the diagnosis of neurological disorder still suffers from two issues: (i) existing methods typically treat all patches equally, despite the fact that only a small number of patches in neuroimaging are relevant to the disease, and (ii) they ignore the structural information inherent in the brain connection network which is crucial for understanding and diagnosing neurological disorders. To tackle these issues, we introduce a novel prompt learning model by learning graph prompts during the fine-tuning process of multimodal models for diagnosing neurological disorders. Specifically, we first leverage GPT-4 to obtain relevant disease concepts and compute semantic similarity between these concepts and all patches. Secondly, we reduce the weight of irrelevant patches according to the semantic similarity between each patch and disease-related concepts. Moreover, we construct a graph among tokens based on these concepts and employ a graph convolutional network layer to extract the structural information of the graph, which is used to prompt the pre-trained multimodal models for diagnosing neurological disorders. Extensive experiments demonstrate that our method achieves superior performance for neurological disorder diagnosis compared with state-of-the-art methods and validated by clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
捏个小雪团完成签到 ,获得积分10
4秒前
Tracy发布了新的文献求助10
4秒前
三物完成签到 ,获得积分10
4秒前
铭心发布了新的文献求助10
5秒前
眼睛大莆发布了新的文献求助10
6秒前
RAmos_1982发布了新的文献求助10
7秒前
小马甲应助科研圣体采纳,获得10
8秒前
bai完成签到,获得积分20
8秒前
英俊的胜完成签到,获得积分10
8秒前
大大发布了新的文献求助10
9秒前
lucky22完成签到 ,获得积分10
9秒前
10秒前
12秒前
无花果应助WN采纳,获得10
12秒前
yyr发布了新的文献求助10
14秒前
小小怪完成签到,获得积分20
15秒前
16秒前
17秒前
完美毛豆发布了新的文献求助10
17秒前
大大完成签到,获得积分10
18秒前
英俊的铭应助yyr采纳,获得10
19秒前
Tracy完成签到,获得积分10
19秒前
bai发布了新的文献求助10
20秒前
小小怪发布了新的文献求助10
20秒前
H与K完成签到,获得积分10
21秒前
蒋中豪2.0完成签到 ,获得积分10
24秒前
renee_yok完成签到 ,获得积分10
26秒前
27秒前
Jasper应助怡然诗霜采纳,获得10
31秒前
32秒前
WN发布了新的文献求助10
33秒前
康康舞曲完成签到 ,获得积分10
33秒前
35秒前
蒋中豪完成签到 ,获得积分10
35秒前
35秒前
Jasmine Mai完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450