已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital-Twin Implementation for 3D Rotordynamic Response via Physics-Informed LSTM Neural Networks

人工神经网络 计算机科学 振动 物理 人工智能 控制工程 机械工程 工程类 声学
作者
Jongin Yang,Joseph Oh,Baik Jin Kim,Alan Palazzolo
出处
期刊:Journal of Vibration and Acoustics 卷期号:146 (2)
标识
DOI:10.1115/1.4065714
摘要

Abstract The rotating assemblies of critical machinery are complex dynamical systems and rotordynamic model response prediction inaccuracy risks machinery failure leading to high production losses. Jeffcott, Euler beam, and high-fidelity 3D solid finite element models are frequently utilized for rotordynamic analyses. Even though the 3D rotor has the higher accuracy, beam models are still widely used in industrial applications. To improve prediction accuracy of the lower-fidelity Jeffcott and beam models, a rotordynamics physics-informed neural network (R-PINN) is proposed. This models physics-informed long short-term memory (LSTM) neural networks that utilize partial or limited measured data, by incorporating physical laws. This approach enables the creation of a Digital Twin, which can produce additional data and help remove noise and outliers. In the current study, two R-PINNs are introduced to validate the superior capability of the model for both low- and high-fidelity physics. Random noise of 10% is introduced into the measured data produced by the Digital Twin to replicate real-world noisy measurements. The result shows that both low- and high-fidelity physics R-PINNs can achieve high accuracy even with high noise data, thereby increasing the robustness of the model. The results clearly demonstrate the ability of the proposed R-PINN algorithm to enhance an Euler beam model's predicted response to the level of accuracy of a 3D solid element model's predicted response, the latter acting as a surrogate for test measurements in an actual application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彘shen完成签到 ,获得积分10
2秒前
绝对草草完成签到,获得积分10
3秒前
科研圣手完成签到,获得积分10
3秒前
科研冲发布了新的文献求助10
4秒前
苗青完成签到,获得积分20
4秒前
小顾完成签到,获得积分10
5秒前
菜菜发布了新的文献求助10
6秒前
鳗鱼远山关注了科研通微信公众号
6秒前
6秒前
苏大壮实完成签到 ,获得积分10
6秒前
隐形曼青应助活力依云采纳,获得10
7秒前
在水一方应助科研圣手采纳,获得10
9秒前
9秒前
11秒前
Bigbbiggstar关注了科研通微信公众号
15秒前
15秒前
16秒前
鳗鱼远山发布了新的文献求助10
18秒前
18秒前
FoxLY发布了新的文献求助10
19秒前
活力依云发布了新的文献求助10
22秒前
李健的小迷弟应助samera采纳,获得10
23秒前
24秒前
苗青发布了新的文献求助30
26秒前
小乐完成签到,获得积分10
26秒前
28秒前
无羡完成签到 ,获得积分10
28秒前
29秒前
脑洞疼应助lssable采纳,获得10
29秒前
32秒前
33秒前
洛尚发布了新的文献求助10
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
无花果应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
香蕉觅云应助科研通管家采纳,获得10
34秒前
慕青应助科研通管家采纳,获得10
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422600
求助须知:如何正确求助?哪些是违规求助? 3022971
关于积分的说明 8903137
捐赠科研通 2710435
什么是DOI,文献DOI怎么找? 1486430
科研通“疑难数据库(出版商)”最低求助积分说明 687061
邀请新用户注册赠送积分活动 682286