Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults

域适应 计算机科学 领域(数学分析) 断层(地质) 集合(抽象数据类型) 适应(眼睛) 数据挖掘 分布式计算 人工智能 心理学 数学 神经科学 地质学 地震学 数学分析 程序设计语言 分类器(UML)
作者
Yuteng Zhang,Hongliang Zhang,Bin Chen,Jinde Zheng,Haiyang Pan
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112100-112100 被引量:1
标识
DOI:10.1016/j.knosys.2024.112100
摘要

Existing popular domain adaptation approaches typically assume that the source and target domains share the same label set. However, in industrial scenarios, the equipment may encounter unknown fault modes because of the harsh operating environment, which limits the application of existing diagnostic methods. To address the above problem, an intrinsic information-guided open set domain adaptation network is proposed for cross-domain fault diagnosis with unknown faults. First, a similarity-based discrimination framework is constructed to enhance the robustness of the model for unknown samples, which learns the similarity between samples and fault prototypes to enhance the classification performance. Then, a multi-information integrated weighting module is designed to quantify the transferability of samples through enhanced domain similarity information learning and prediction uncertainty information learning methods. Additionally, a self-supervised neighborhood clustering learning method is constructed, which enables the model to learn structural information about the target domain and encourages the target samples to cluster closely for better separability. Finally, the weighted open set adversarial training framework effectively facilitates diagnostic knowledge transfer and unknown fault recognition. Comprehensive experimental results on two datasets demonstrate the effectiveness of the proposed method in addressing the open set cross-domain diagnosis problem, which achieves promising performance over the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助小超人采纳,获得10
刚刚
gdh发布了新的文献求助10
1秒前
Manxi发布了新的文献求助10
1秒前
1秒前
1秒前
甜甜玫瑰应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
HAL应助科研通管家采纳,获得10
2秒前
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
甜甜玫瑰应助科研通管家采纳,获得10
2秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
HAL应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
3秒前
nininidoc完成签到,获得积分10
4秒前
6秒前
zsgot3完成签到,获得积分10
6秒前
zy驳回了今后应助
7秒前
斯文明杰发布了新的文献求助10
7秒前
Iwan完成签到,获得积分10
7秒前
可爱的函函应助美好忆南采纳,获得10
8秒前
8秒前
Manxi完成签到,获得积分10
9秒前
光翟君完成签到,获得积分20
9秒前
超级的白竹完成签到,获得积分20
9秒前
10秒前
10秒前
hkh发布了新的文献求助10
11秒前
研友_VZG7GZ应助婷婷采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033