重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults

域适应 计算机科学 领域(数学分析) 断层(地质) 集合(抽象数据类型) 适应(眼睛) 数据挖掘 分布式计算 人工智能 心理学 数学 神经科学 地质学 地震学 数学分析 分类器(UML) 程序设计语言
作者
Yuteng Zhang,Hongliang Zhang,Bin Chen,Jinde Zheng,Haiyang Pan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112100-112100 被引量:1
标识
DOI:10.1016/j.knosys.2024.112100
摘要

Existing popular domain adaptation approaches typically assume that the source and target domains share the same label set. However, in industrial scenarios, the equipment may encounter unknown fault modes because of the harsh operating environment, which limits the application of existing diagnostic methods. To address the above problem, an intrinsic information-guided open set domain adaptation network is proposed for cross-domain fault diagnosis with unknown faults. First, a similarity-based discrimination framework is constructed to enhance the robustness of the model for unknown samples, which learns the similarity between samples and fault prototypes to enhance the classification performance. Then, a multi-information integrated weighting module is designed to quantify the transferability of samples through enhanced domain similarity information learning and prediction uncertainty information learning methods. Additionally, a self-supervised neighborhood clustering learning method is constructed, which enables the model to learn structural information about the target domain and encourages the target samples to cluster closely for better separability. Finally, the weighted open set adversarial training framework effectively facilitates diagnostic knowledge transfer and unknown fault recognition. Comprehensive experimental results on two datasets demonstrate the effectiveness of the proposed method in addressing the open set cross-domain diagnosis problem, which achieves promising performance over the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助踏实乌冬面采纳,获得10
刚刚
qiao发布了新的文献求助10
1秒前
1秒前
只要两毛九完成签到,获得积分10
2秒前
wltwb完成签到,获得积分10
3秒前
3秒前
3秒前
xiaoyudian完成签到,获得积分10
3秒前
4秒前
wxyshare应助泡泡采纳,获得10
5秒前
脑洞疼应助哦哦采纳,获得10
5秒前
6秒前
6秒前
快乐砖家完成签到,获得积分10
6秒前
072完成签到,获得积分10
6秒前
wltwb发布了新的文献求助10
7秒前
7秒前
JohnLocke完成签到,获得积分10
7秒前
8秒前
8秒前
桃桃奶盖发布了新的文献求助10
8秒前
20240901发布了新的文献求助10
8秒前
共享精神应助康康采纳,获得10
9秒前
啦啦啦啦发布了新的文献求助20
9秒前
10秒前
happypig发布了新的文献求助10
10秒前
科研通AI6应助cheng采纳,获得30
10秒前
雪落你看不见完成签到,获得积分10
11秒前
朱大帅发布了新的文献求助10
11秒前
11秒前
嘿嘿嘿发布了新的文献求助10
12秒前
12秒前
快乐砖家发布了新的文献求助10
12秒前
安小安发布了新的文献求助20
12秒前
愿抒完成签到 ,获得积分10
13秒前
SciGPT应助潇洒雁风采纳,获得10
13秒前
tk完成签到,获得积分10
13秒前
共享精神应助A宇采纳,获得10
14秒前
搜集达人应助野原新知珉采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707