Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults

域适应 计算机科学 领域(数学分析) 断层(地质) 集合(抽象数据类型) 适应(眼睛) 数据挖掘 分布式计算 人工智能 心理学 数学 神经科学 地质学 地震学 数学分析 分类器(UML) 程序设计语言
作者
Yuteng Zhang,Hongliang Zhang,Bin Chen,Jinde Zheng,Haiyang Pan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112100-112100 被引量:1
标识
DOI:10.1016/j.knosys.2024.112100
摘要

Existing popular domain adaptation approaches typically assume that the source and target domains share the same label set. However, in industrial scenarios, the equipment may encounter unknown fault modes because of the harsh operating environment, which limits the application of existing diagnostic methods. To address the above problem, an intrinsic information-guided open set domain adaptation network is proposed for cross-domain fault diagnosis with unknown faults. First, a similarity-based discrimination framework is constructed to enhance the robustness of the model for unknown samples, which learns the similarity between samples and fault prototypes to enhance the classification performance. Then, a multi-information integrated weighting module is designed to quantify the transferability of samples through enhanced domain similarity information learning and prediction uncertainty information learning methods. Additionally, a self-supervised neighborhood clustering learning method is constructed, which enables the model to learn structural information about the target domain and encourages the target samples to cluster closely for better separability. Finally, the weighted open set adversarial training framework effectively facilitates diagnostic knowledge transfer and unknown fault recognition. Comprehensive experimental results on two datasets demonstrate the effectiveness of the proposed method in addressing the open set cross-domain diagnosis problem, which achieves promising performance over the comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KYTYYDS发布了新的文献求助10
1秒前
HanluMa完成签到 ,获得积分10
1秒前
fzh完成签到,获得积分10
5秒前
Jenny完成签到,获得积分10
7秒前
伟立完成签到,获得积分10
7秒前
14秒前
15秒前
然12138完成签到 ,获得积分10
15秒前
香蕉觅云应助SnownS采纳,获得10
15秒前
川荣李奈完成签到 ,获得积分10
19秒前
xinbowey发布了新的文献求助10
19秒前
火星上向珊完成签到,获得积分10
22秒前
24秒前
柳条儿完成签到,获得积分10
24秒前
如意幻枫完成签到,获得积分10
28秒前
29秒前
29秒前
渔婆发布了新的文献求助10
30秒前
32秒前
风趣的泥猴桃完成签到 ,获得积分10
33秒前
33秒前
zgsjymysmyy发布了新的文献求助30
34秒前
fuchao完成签到,获得积分10
34秒前
牧谷发布了新的文献求助10
35秒前
好吃的火龙果完成签到 ,获得积分10
36秒前
天边发布了新的文献求助10
37秒前
东方越彬发布了新的文献求助10
38秒前
赘婿应助sunny采纳,获得10
38秒前
38秒前
38秒前
SnownS完成签到,获得积分10
39秒前
123123发布了新的文献求助10
43秒前
SnownS发布了新的文献求助10
44秒前
44秒前
44秒前
汉堡包应助天边采纳,获得10
46秒前
PengqianGuo完成签到,获得积分10
48秒前
echo发布了新的文献求助10
48秒前
bkagyin应助cancan采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566