亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults

域适应 计算机科学 领域(数学分析) 断层(地质) 集合(抽象数据类型) 适应(眼睛) 数据挖掘 分布式计算 人工智能 心理学 数学 神经科学 地质学 地震学 数学分析 分类器(UML) 程序设计语言
作者
Yuteng Zhang,Hongliang Zhang,Bin Chen,Jinde Zheng,Haiyang Pan
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112100-112100 被引量:1
标识
DOI:10.1016/j.knosys.2024.112100
摘要

Existing popular domain adaptation approaches typically assume that the source and target domains share the same label set. However, in industrial scenarios, the equipment may encounter unknown fault modes because of the harsh operating environment, which limits the application of existing diagnostic methods. To address the above problem, an intrinsic information-guided open set domain adaptation network is proposed for cross-domain fault diagnosis with unknown faults. First, a similarity-based discrimination framework is constructed to enhance the robustness of the model for unknown samples, which learns the similarity between samples and fault prototypes to enhance the classification performance. Then, a multi-information integrated weighting module is designed to quantify the transferability of samples through enhanced domain similarity information learning and prediction uncertainty information learning methods. Additionally, a self-supervised neighborhood clustering learning method is constructed, which enables the model to learn structural information about the target domain and encourages the target samples to cluster closely for better separability. Finally, the weighted open set adversarial training framework effectively facilitates diagnostic knowledge transfer and unknown fault recognition. Comprehensive experimental results on two datasets demonstrate the effectiveness of the proposed method in addressing the open set cross-domain diagnosis problem, which achieves promising performance over the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倪妮发布了新的文献求助10
3秒前
科研通AI6应助倪妮采纳,获得10
10秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
从容芮给嘉心糖的求助进行了留言
42秒前
52秒前
56秒前
57秒前
drtianyunhong完成签到,获得积分10
1分钟前
Krim完成签到 ,获得积分0
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
YifanWang完成签到,获得积分0
2分钟前
科研通AI5应助倪妮采纳,获得10
2分钟前
2分钟前
倪妮发布了新的文献求助10
2分钟前
从容芮完成签到,获得积分0
3分钟前
4分钟前
4分钟前
Hong发布了新的文献求助10
4分钟前
大模型应助小冯看不懂采纳,获得10
4分钟前
4分钟前
4分钟前
ccm应助Hong采纳,获得10
4分钟前
MCRing完成签到 ,获得积分10
5分钟前
6分钟前
xiliyusheng发布了新的文献求助10
6分钟前
情怀应助xiliyusheng采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
Suraim完成签到,获得积分10
6分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
里昂义务发布了新的文献求助30
8分钟前
kuoping完成签到,获得积分0
8分钟前
drirshad完成签到,获得积分10
9分钟前
9分钟前
Young发布了新的文献求助10
9分钟前
Young完成签到,获得积分10
9分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127469
求助须知:如何正确求助?哪些是违规求助? 4330489
关于积分的说明 13493380
捐赠科研通 4166123
什么是DOI,文献DOI怎么找? 2283772
邀请新用户注册赠送积分活动 1284800
关于科研通互助平台的介绍 1224844