Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults

域适应 计算机科学 领域(数学分析) 断层(地质) 集合(抽象数据类型) 适应(眼睛) 数据挖掘 分布式计算 人工智能 心理学 数学 神经科学 地质学 地震学 数学分析 分类器(UML) 程序设计语言
作者
Yuteng Zhang,Hongliang Zhang,Bin Chen,Jinde Zheng,Haiyang Pan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112100-112100 被引量:1
标识
DOI:10.1016/j.knosys.2024.112100
摘要

Existing popular domain adaptation approaches typically assume that the source and target domains share the same label set. However, in industrial scenarios, the equipment may encounter unknown fault modes because of the harsh operating environment, which limits the application of existing diagnostic methods. To address the above problem, an intrinsic information-guided open set domain adaptation network is proposed for cross-domain fault diagnosis with unknown faults. First, a similarity-based discrimination framework is constructed to enhance the robustness of the model for unknown samples, which learns the similarity between samples and fault prototypes to enhance the classification performance. Then, a multi-information integrated weighting module is designed to quantify the transferability of samples through enhanced domain similarity information learning and prediction uncertainty information learning methods. Additionally, a self-supervised neighborhood clustering learning method is constructed, which enables the model to learn structural information about the target domain and encourages the target samples to cluster closely for better separability. Finally, the weighted open set adversarial training framework effectively facilitates diagnostic knowledge transfer and unknown fault recognition. Comprehensive experimental results on two datasets demonstrate the effectiveness of the proposed method in addressing the open set cross-domain diagnosis problem, which achieves promising performance over the comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百特曼发布了新的文献求助10
1秒前
1秒前
2秒前
zyh完成签到,获得积分10
2秒前
慕青应助云泥采纳,获得10
2秒前
3秒前
传奇3应助gao采纳,获得10
3秒前
小学森发布了新的文献求助10
3秒前
FashionBoy应助芯止谭轩采纳,获得10
4秒前
温良恭俭让完成签到,获得积分10
4秒前
诸乌发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
小黑发布了新的文献求助10
7秒前
ww007完成签到,获得积分10
7秒前
Hello应助精明代丝采纳,获得10
7秒前
minnie完成签到,获得积分10
7秒前
缓慢钢笔发布了新的文献求助10
8秒前
8秒前
一烟尘发布了新的文献求助10
8秒前
车车完成签到,获得积分10
8秒前
bingqian_yao完成签到,获得积分10
9秒前
我是老大应助zzz采纳,获得10
9秒前
9秒前
再不洗洗睡就来不及了完成签到,获得积分10
9秒前
标致忆丹完成签到,获得积分10
9秒前
杨震完成签到,获得积分10
10秒前
10秒前
11秒前
ww007发布了新的文献求助10
11秒前
11秒前
ANG完成签到 ,获得积分10
11秒前
啊啊啊啊完成签到,获得积分10
11秒前
Jasper应助zh1858f采纳,获得10
12秒前
12秒前
xinyu完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779