ASCA-squeeze net: Aquila sine cosine algorithm enabled hybrid deep learning networks for digital image forgery detection

计算机科学 人工智能 算法 卷积神经网络 正弦 深度学习 图像(数学) 分类器(UML) 离散余弦变换 数字图像 人口 三角函数 模式识别(心理学) 图像处理 数学 社会学 人口学 几何学
作者
G. Nirmalapriya,Balajee Maram,L. Lakshmanan,M. Navaneethakrishnan
出处
期刊:Computers & Security [Elsevier]
卷期号:128: 103155-103155 被引量:6
标识
DOI:10.1016/j.cose.2023.103155
摘要

The basic element in resolving numerous challenges, particularly social concerns like those in court cases and Facebook, is image forgery detection. The primary objective of this study is to build and develop an effective system for detecting digital image forgery utilising the recently proposed technique called the Aquila Sine Cosine Algorithm (ASCA). The forgery from the digital image is detected in this study using a hybrid deep learning technique that incorporates Deep Convolutional Neural Network (DCNN) and Squeeze Net. Additionally, the training time and computational complexity of the detection process are decreased by updating the weight of both the DCNN and the Squeeze Net using the developed ASCA technique. Additionally, the developed ASCA is produced by combining the update functions of the Aquila Optimizer (AO) with the Sine Cosine Algorithm (SCA). As a result, the hybrid deep learning classifier provides the classified output as either the authentic image or the forged image using a copy-move forgery detection dataset. The experimentation of the developed model has provided higher performance, as shown by testing accuracy, True Positive Rate (TPR), and True Negative Rate (TNR) of 0.980, 0.976, and 0.956, respectively. Furthermore, by varying the iteration, testing accuracy, TNR, and TPR obtained by the devised technique are 0.944, 0.947, and 0.936, and by varying the population size obtained testing accuracy values of 1, TNR values of 1.003, and TPR values of 0.991, respectively, by algorithmic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gj完成签到,获得积分20
1秒前
2秒前
2秒前
away完成签到,获得积分10
3秒前
ceyun发布了新的文献求助10
3秒前
缺了一口的巧克力蛋挞完成签到 ,获得积分10
5秒前
6秒前
dwls应助王_123123123123w采纳,获得10
6秒前
6秒前
西乡塘塘主完成签到,获得积分10
7秒前
英姑应助gj采纳,获得10
8秒前
留猪完成签到,获得积分10
8秒前
9秒前
nenoaowu应助紧张的颤采纳,获得50
9秒前
9秒前
10秒前
10秒前
12秒前
李爱国应助John采纳,获得10
12秒前
ceeray23应助科研通管家采纳,获得10
12秒前
12秒前
打打应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
生动惜灵应助科研通管家采纳,获得10
13秒前
13秒前
cocolu应助科研通管家采纳,获得10
13秒前
shengChen应助科研通管家采纳,获得10
13秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
Dalala完成签到,获得积分10
13秒前
大苏完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
杨氏发布了新的文献求助10
15秒前
CipherSage应助YUYU采纳,获得10
16秒前
pxn发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444202
求助须知:如何正确求助?哪些是违规求助? 3040237
关于积分的说明 8980504
捐赠科研通 2728907
什么是DOI,文献DOI怎么找? 1496728
科研通“疑难数据库(出版商)”最低求助积分说明 691817
邀请新用户注册赠送积分活动 689386