Progress of hydrogenation engineering in crystalline silicon solar cells: a review

晶体硅 钝化 材料科学 太阳能电池 杂质 载流子寿命 单晶硅 纳米技术 光伏系统 化学工程 光电子学 化学 电气工程 图层(电子) 有机化学 工程类
作者
Lihui Song,Zechen Hu,Dongyang Lin,Deren Yang,Xuegong Yu
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:55 (45): 453002-453002 被引量:10
标识
DOI:10.1088/1361-6463/ac9066
摘要

Abstract Crystalline silicon solar cells are always moving towards ‘high efficiency and low cost’, which requires continuously improving the quality of crystalline silicon materials. Nevertheless, crystalline silicon materials typically contain various kinds of impurities and defects, which act as carrier recombination centers. Therefore these impurities and defects must be well controlled during the solar cell fabrication processes to improve the cell efficiency. Hydrogenation of crystalline silicon is one important method to deactivate these impurities and defects, which is so-called ‘hydrogenation engineering’ in this paper. Hydrogen is widely reported to be able to passivate diverse defects like crystallographic defects, metallic impurities, boron-oxygen related defects and etc, but the effectiveness of hydrogen passivation depends strongly on the processing conditions. Moreover, in this decade, advanced hydrogenation technique has been developed and widely applied in the photovoltaic industry to significantly improve the performance of silicon solar cells. As the research on hydrogenation study has made a significant progress, it is the right time to write a review paper on introducing the state-of-the-art hydrogenation study and its applications in photovoltaic industry. The paper first introduces the fundamental properties of hydrogen in crystalline silicon and then discusses the applications of hydrogen on deactivating/inducing typical defects (e.g. dislocations, grain boundaries, various metallic impurities, boron–oxygen related defects and light and elevated temperature induced degradation defect) in p- and n-type crystalline silicon, respectively. At last, the benefits of hydrogenation engineering on the next-generation silicon solar cells (e.g. tunnel oxide passivated contact (TOPCon) and silicon heterojunction (SHJ) solar cells) are discussed. Overall, it was found that hydrogen can deactivate most of typical defects (sometimes induce defect) in n- and p-type crystalline silicon, leading to a significant efficiency enhancement in passivated emitter rear contact, TOPCon and SHJ solar cells. In conclusion, the paper aims to assist young researchers to better understand hydrogenation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗_应助妮妮采纳,获得10
1秒前
情怀应助Chinium采纳,获得10
1秒前
风起枫落完成签到 ,获得积分10
2秒前
选择性哑巴完成签到 ,获得积分10
2秒前
离子电池发布了新的文献求助10
2秒前
Jasper应助Recover采纳,获得10
2秒前
执意完成签到 ,获得积分10
3秒前
调皮帆布鞋完成签到,获得积分10
5秒前
3-HP完成签到,获得积分10
5秒前
赘婿应助负责半蕾采纳,获得10
5秒前
贤惠的铭完成签到,获得积分10
8秒前
芊芊完成签到 ,获得积分10
9秒前
烟花应助dejong采纳,获得10
9秒前
Sun1c7完成签到,获得积分10
10秒前
17发布了新的文献求助10
10秒前
Agoni完成签到,获得积分10
11秒前
wyg117完成签到,获得积分10
12秒前
cq220发布了新的文献求助10
13秒前
13秒前
韩庚你这么帅干嘛完成签到,获得积分10
13秒前
菓小柒完成签到 ,获得积分10
14秒前
14秒前
JamesPei应助zeng采纳,获得10
15秒前
小王同学完成签到,获得积分10
15秒前
Recover发布了新的文献求助10
16秒前
哭泣鼠标完成签到 ,获得积分10
16秒前
YUE完成签到,获得积分10
16秒前
研友_ZegWmL发布了新的文献求助10
18秒前
孙同学完成签到,获得积分10
18秒前
小李完成签到 ,获得积分10
20秒前
Droplet发布了新的文献求助10
20秒前
明亮飞双完成签到,获得积分10
21秒前
mlg完成签到 ,获得积分10
21秒前
加减乘除完成签到,获得积分10
22秒前
lsy完成签到,获得积分10
23秒前
23秒前
Recover完成签到,获得积分10
24秒前
Air完成签到 ,获得积分10
24秒前
一切顺利完成签到,获得积分10
26秒前
26秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997864
求助须知:如何正确求助?哪些是违规求助? 2658531
关于积分的说明 7196689
捐赠科研通 2293971
什么是DOI,文献DOI怎么找? 1216369
科研通“疑难数据库(出版商)”最低求助积分说明 593516
版权声明 592888