已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Assessment of Paralinguistic Acoustic Features for Detection of Alzheimer's Dementia in Spontaneous Speech

副语言 计算机科学 特征(语言学) 特征提取 模式识别(心理学) 人工智能 语音识别 集合(抽象数据类型) 语言学 沟通 哲学 社会学 程序设计语言
作者
Fasih Haider,Sofía de la Fuente,Saturnino Luz
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:14 (2): 272-281 被引量:113
标识
DOI:10.1109/jstsp.2019.2955022
摘要

Speech analysis could provide an indicator of Alzheimer's disease and help develop clinical tools for automatically detecting and monitoring disease progression. While previous studies have employed acoustic (speech) features for characterisation of Alzheimer's dementia, these studies focused on a few common prosodic features, often in combination with lexical and syntactic features which require transcription. We present a detailed study of the predictive value of purely acoustic features automatically extracted from spontaneous speech for Alzheimer's dementia detection, from a computational paralinguistics perspective. The effectiveness of several state-of-the-art paralinguistic feature sets for Alzheimer's detection were assessed on a balanced sample of DementiaBank's Pitt spontaneous speech dataset, with patients matched by gender and age. The feature sets assessed were the extended Geneva minimalistic acoustic parameter set (eGeMAPS), the emobase feature set, the ComParE 2013 feature set, and new Multi-Resolution Cochleagram (MRCG) features. Furthermore, we introduce a new active data representation (ADR) method for feature extraction in Alzheimer's dementia recognition. Results show that classification models based solely on acoustic speech features extracted through our ADR method can achieve accuracy levels comparable to those achieved by models that employ higher-level language features. Analysis of the results suggests that all feature sets contribute information not captured by other feature sets. We show that while the eGeMAPS feature set provides slightly better accuracy than other feature sets individually (71.34%), “hard fusion” of feature sets improves accuracy to 78.70%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Louis完成签到,获得积分10
1秒前
大云发布了新的文献求助10
5秒前
大模型应助Louis采纳,获得10
6秒前
8秒前
小武完成签到,获得积分10
8秒前
纯洁发布了新的文献求助10
9秒前
可可完成签到 ,获得积分10
10秒前
11秒前
酷波er应助大云采纳,获得10
13秒前
神介.Tzx发布了新的文献求助10
14秒前
执着瓜6发布了新的文献求助10
16秒前
态度完成签到,获得积分10
21秒前
斯文败类应助温暖静柏采纳,获得10
26秒前
招水若离完成签到,获得积分10
26秒前
朴实的秋完成签到,获得积分10
27秒前
吱吱吱完成签到 ,获得积分10
28秒前
29秒前
纯洁完成签到,获得积分10
29秒前
执着瓜6完成签到,获得积分10
29秒前
33秒前
33秒前
烂漫的绝悟完成签到 ,获得积分10
33秒前
krkr完成签到,获得积分10
35秒前
youngyang完成签到 ,获得积分10
35秒前
温暖静柏完成签到,获得积分20
35秒前
罗浩禹发布了新的文献求助10
38秒前
42秒前
42秒前
玩命的毛衣完成签到 ,获得积分10
44秒前
47秒前
大模型应助大砍刀采纳,获得10
48秒前
温暖静柏发布了新的文献求助10
48秒前
星辰大海应助眼睛大香芦采纳,获得10
50秒前
50秒前
52秒前
聪慧的谷雪完成签到,获得积分20
53秒前
雾蓝完成签到,获得积分10
57秒前
Qing发布了新的文献求助10
58秒前
结实小蘑菇完成签到,获得积分20
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530887
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650855