To evaluate the effects of deep learning reconstruction (DLR) in qualitative and quantitative image quality of non-contrast magnetic resonance coronary angiography (MRCA).Ten healthy volunteers underwent conventional MRCA (C-MRCA) and high-resolution (HR) MRCA on a 3T magnetic resonance imaging with a voxel size of 1.8 × 1.1 × 1.7 mm3 and 1.8 × 0.6 × 1.0 mm3, respectively, for C-MRCA and HR-MRCA. High-resolution magnetic resonance coronary angiography was also reconstructed with the DLR technique (DLR-HR-MRCA). We compared the contrast-to-noise ratio (CNR) and visual evaluation scores for vessel sharpness and traceability of proximal and distal coronary vessels on a 4-point scale among 3 image series.The vascular CNR value on the C-MRCA and the DLR-HR-MRCA was significantly higher than that on the HR-MRCA in the proximal and distal coronary arteries (13.9 ± 6.4, 11.3 ± 4.4, and 7.8 ± 2.6 for C-MRCA, DLR-HR-MRCA, and HR-MRCA, P < .05, respectively). Mean visual evaluation scores for the vessel sharpness and traceability of proximal and distal coronary vessels were significantly higher on the HR-DLR-MRCA than the C-MRCA (P < .05, respectively).Deep learning reconstruction significantly improved the CNR of coronary arteries on HR-MRCA, resulting in both higher visual image quality and better vessel traceability compared with C-MRCA.