可解释性
计算机科学
编码器
直觉
特征学习
图形
人工智能
机器学习
多任务学习
一般化
归纳偏置
理论计算机科学
任务(项目管理)
数学
数学分析
哲学
管理
认识论
经济
操作系统
作者
Yuwei Fu,Yun Xiong,Philip S. Yu,Tianyi Tao,Yangyong Zhu
标识
DOI:10.1109/bigdata47090.2019.9006097
摘要
In this paper, we propose a novel representation learning framework, named MEGAE, for heterogeneous information networks. To investigate the rich semantic information in heterogeneous information networks, we use metapaths to complete implicit links between nodes. A graph attention encoder is further used to learn graph structural information with shared weight parameters. The attention mechanism, on the other hand, provides us an intuition of how the representation is learned and improves the interpretability of our model. Furthermore, a multitask learning of node classification and link prediction is trained to achieve more robust generalization ability. To validate our ideas, extensive experiments on three real-world datasets show that our model achieves state-of-the-art results on node classification and link prediction tasks in HINs.
科研通智能强力驱动
Strongly Powered by AbleSci AI