Radiomics Analysis Based on Ultrasound Images to Distinguish the Tumor Stage and Pathological Grade of Bladder Cancer

医学 分级(工程) 病态的 队列 接收机工作特性 阶段(地层学) 放射科 超声波 膀胱癌 T级 癌症 肿瘤科 病理 内科学 工程类 土木工程 古生物学 生物
作者
Ruizhi Gao,Rong Wen,Dong‐yue Wen,Jing Huang,Hui Qin,Xin Li,Xin‐rong Wang,Yun He,Hong Yang
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:40 (12): 2685-2697 被引量:9
标识
DOI:10.1002/jum.15659
摘要

Objectives To identify the clinical value of ultrasound radiomic features in the preoperative prediction of tumor stage and pathological grade of bladder cancer (BLCA) patients. Methods We retrospectively collected patients who had been diagnosed with BLCA by pathology. Ultrasound‐based radiomic features were extracted from manually segmented regions of interest. Participants were randomly assigned to a training cohort and a validation cohort at a ratio of 7:3. Radiomic features were Z‐score normalized and submitted to dimensional reduction analysis (including Spearman's correlation coefficient analysis, the random forest algorithm, and statistical testing) for core feature selection. Classifiers for tumor stage and pathological grade prediction were then constructed. Prediction performance was estimated by the area under the curve (AUC) of the receiver operating characteristic curve and was verified by the validation cohort. Results A total of 5936 radiomic features were extracted from each of the ultrasound images obtained from 157 patients. The BLCA tumor stage and pathological grade prediction models were developed based on 30 and 35 features, respectively. Both models showed good predictive ability. For the tumor stage prediction model, the AUC was 0.94 in the training cohort and 0.84 in the validation cohort. For the pathological grade model, the AUCs obtained were 0.84 in the training cohort and 0.75 in the validation cohort. Conclusions The ultrasound‐based radiomics models performed well in the preoperative tumor staging and pathological grading of BLCA. These findings should be applied clinically to optimize treatment and to assess prognoses for BLCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
淡淡半山发布了新的文献求助10
1秒前
aaa完成签到,获得积分10
1秒前
搞怪不言发布了新的文献求助10
1秒前
卡拉蹦蹦发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助30
1秒前
2秒前
yuanbao发布了新的文献求助10
2秒前
wllom完成签到,获得积分10
2秒前
li完成签到,获得积分10
2秒前
细腻晓露发布了新的文献求助10
3秒前
3秒前
泰裤辣发布了新的文献求助10
4秒前
cipher完成签到 ,获得积分10
4秒前
韦灵珊完成签到,获得积分10
5秒前
丘比特应助Y哦莫哦莫采纳,获得10
5秒前
搜集达人应助淡淡半山采纳,获得10
5秒前
李健应助爱吃草莓采纳,获得10
6秒前
6秒前
wllom发布了新的文献求助10
6秒前
Mississippiecho完成签到,获得积分10
6秒前
Thor发布了新的文献求助20
6秒前
6秒前
可爱的函函应助如意闭月采纳,获得10
7秒前
7秒前
ptalala发布了新的文献求助10
7秒前
whywhy完成签到,获得积分10
7秒前
7秒前
liyuhua发布了新的文献求助10
7秒前
慕子默发布了新的文献求助10
8秒前
科研小能手完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
燮大帅完成签到,获得积分10
10秒前
情怀应助AA采纳,获得10
11秒前
泰裤辣完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809